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Abstract

Let X be a geometrically irreducible smooth projective curve defined over a field k, and let E be a vector bundle on X. Then E

is semistable if and only if there is a vector bundle F on X such that Hi(X,F ⊗ E) = 0 for i = 0,1. We give an explicit bound
for the rank of F . The proof uses a result of Popa for the case where k is algebraically closed. To cite this article: I. Biswas et al.,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les fibrés vectoriels semi-stables au-dessus des courbes. Soit X une courbe projective lisse géométriquement irréductible
définie sur un corps k, et soit E un fibré vectoriel sur X. E est semi-stable si et seulement s’il y a un fibré vectoriel F sur X tel que
Hi(X,F ⊗ E) = 0 pour i = 0,1. Nous donnons une borne explicite pour le rang de F . La preuve utilise un résultat de Popa pour
le cas où k est algébriquement clos. Pour citer cet article : I. Biswas et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let k be field with algebraic closure K , and let X be a geometrically irreducible, smooth, projective curve defined
over k of genus g � 2. Recall that a vector bundle E over X is called semistable if for all subbundles of positive rank

E′ ⊂ E defined over k, the inequality μ(E′) � μ(E) holds. Here the rational number μ(E′) := deg(E′)
rk(E′) is the slope of

the vector bundle E′. It is known that E is semistable if and only if the base change E ⊗k K → X ×k K is semistable;
this is proved in [4, p. 97, Proposition 3].

Assume that there exists a second vector bundle F on X, such that H ∗(X,F ⊗ E) = 0, meaning H 0(X,F ⊗ E) =
0 = H 1(X,F ⊗ E). We call such a vector bundle F to be cohomologically orthogonal to E. This condition implies
that χ(F ⊗ E) = 0, or equivalently, μ(F) + μ(E) = g − 1. If there were a destabilizing bundle E′ ⊂ E, then we
would have μ(F ⊗ E′) > g − 1 implying h0(F ⊗ E′) > 0. This is absurd because H 0(F ⊗ E′) ⊂ H 0(F ⊗ E) = 0.
Consequently, the statement H ∗(X,F ⊗ E) = 0 implies the semistability of E (and of F as well).
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Faltings showed in [2] that for k algebraically closed, the converse is also true: if E is semistable, then there exists a
vector bundle F with H ∗(X,F ⊗E) = 0. Popa showed in [5, Theorem 5.3] that F can be chosen to have a prescribed
rank and determinant that depend only on the rank and degree of E.

Faltings’ result generalizes to arbitrary fields k as follows. Given the semistable vector bundle E on X defined
over k, it yields a cohomologically orthogonal bundle F ′ defined over K . This F ′ is then defined over some finite
extension �/k. The pushforward F of F ′ along the morphisms X ×k � → X gives us a vector bundle F defined
over k, which is cohomologically orthogonal to E according to the projection formula.

For perfect fields k, a bound on the rank of F is given in [1]. The main result, namely Theorem 3.1, of [1] shows
that for a perfect field k, and a semistable vector bundle E on X/k, there exists a vector bundle F of a given rank R

defined over k such that H ∗(X,F ⊗ E) = 0. However, the rank R of F is huge in general, and the bound in [1] is far
from being optimal.

The purpose of this note is twofold: First we remove the perfectness assumption. Secondly, we improve the bound
on the rank R of the sheaf F which is cohomologically orthogonal to a semistable vector bundle E.

In [1], a point outside the divisor ΘE was constructed using [1, Corollary 2.5] and the fact that the moduli space of
S-equivalence classes of rank R semistable vector bundles on X of fixed determinant is projective. Here we use the
geometry of the moduli space of rank R semistable vector bundles with fixed determinant and rank, which is known
to be a unirational variety.

2. Notation

k – a field
K – its algebraic closure
X – a smooth, projective curve defined over the field k which is geometrically irreducible
g – the genus of X

ωX – the dualizing line bundle on X

E – a vector bundle on X defined over k

r – the rank rk(E) of E

d – the degree deg(E) of E

h – h := gcd(r, d), the greatest common divisor of r and d

m – m := � r2+1
8h

� the round up
R – R := 2rm (this will be the rank of a cohomologically orthogonal bundle F over k or over some finite extension

L/k if k is a finite field)
D – D := m(2r(g − 1) − 2d) (this will be the degree of F )
L – L := ω⊗mr

X ⊗ det(E)⊗−2m (this will be the determinant of the bundle F ).

3. Infinite fields

Theorem 1. Suppose k is a infinite field, and let X be a smooth projective geometrically irreducible curve over k. For
a vector bundle E of rank r and degree d over X, the following three statements are equivalent:

(i) The vector bundle E is semistable.
(ii) There exists a vector bundle F on X defined over k such that H ∗(X,F ⊗ E) = 0.

(iii) There exists a vector bundle F on X defined over k of rank R and determinant L such that H ∗(X,F ⊗ E) = 0.

Proof. Note that (iii) ⇒ (ii) is trivial, and (ii) ⇔ (i) was discussed in the introduction. We will show that (i) ⇒ (iii).
Here are the steps of the proof.

(1) Since the statement is twist invariant we may assume (replacing E by E ⊗ ω⊗n
X for an appropriate integer n) that

2 − 3g � μ(E) < −g.
(2) We take R and L as above, and let F be any semistable vector bundle of rank R and determinant L defined

over K . We obtain μ(F) = g − 1 −μ(E) > 2g − 1. Thus, for any point P ∈ X(K) we have μ(F(−P)) > 2g − 2.
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By semistability of F we conclude that Hom(F (−P),ωX) = 0. From Serre duality we have H 1(X,F (−P)) = 0.
Therefore, it follows that any semistable bundle F of rank R and determinant L is globally generated.

(3) Since F is globally generated we obtain a surjection H 0(X,F ) ⊗k OX → F . For a general (R + 1)-dimensional
linear subspace

W ⊂ H 0(X ×k K,F ⊗k K),

the corresponding homomorphism W ⊗K OX×kK → F ⊗k K is surjective because X is smooth of dimension
one.

(4) If detF ∼= L, then for any surjection π : O⊕(R+1)
X → F , the kernel is L−1. Thus, all those F (and a little bit more)

are overparameterized by P(V ) where V := Hom(L−1, O⊕(R+1)
X )∨. We consider the morphisms

X X × P(V )
p q

P(V )

and have the universal short exact sequence on X × P(V ):

0 → L−1 � O(−1) → p∗O⊕(R+1)
X → F → 0.

Obviously, both P(V ) and F are defined over k.
(5) We tensor the above short exact sequence of sheaves with p∗E, and apply the push forward q∗ to P(V ). Let

→ H 1(X,E ⊗ L−1) ⊗ OP(V )(−1)
ψE−→ H 1(X,E⊕(R+1)) ⊗ OP(V ) → R1q∗(p∗E ⊗ F ) → 0

be the resulting long exact sequence of sheaves on P(V ). Since E ⊗ L−1 and E⊕(R+1) are semistable vector
bundles of negative degree, they have no global sections. Using the Riemann–Roch theorem, we get h1(X,E ⊗
L−1) = h1(X,E⊕(R+1)) = rD + g − 1 − d . The support ΘE of R1q∗(p∗E ⊗ F) is therefore the vanishing locus
of the section det(ψE) ∈ H 0(OP(V )(rD + g − 1 − d)). Set theoretically ΘE describes all short exact sequences

0 → L−1 α−→ O⊕(R+1)
X → Fα → 0

such that h1(E ⊗Fα) > 0. This includes all Fα which are not locally free, or not semistable. Popa’s result [5, The-
orem 5.3] implies that with our choices of the rank R the set ΘE ⊂ P(V ) is a divisor, or equivalently, det(ψE) �= 0.

(6) Since k has infinitely many elements the k-rational points of the divisor ΘE are a proper subset of P(V )(k). See
also [3, p. 4, Proposition 1.3(a)]. �

4. Finite fields

In this section we consider a field k with q elements. We will need the additional number

M := ⌈
logq

(
r(D + g − 1) − d

)⌉

along with the notation from Section 2.

Theorem 2. Suppose k is a finite field with q elements, and let X be a smooth projective geometrically irreducible
curve over k. For a vector bundle E of rank r and degree d over X, the following statements are equivalent:

(i) The vector bundle E is semistable.
(ii) There exists a vector bundle F on X defined over k such that H ∗(X,F ⊗ E) = 0.

(iii) For every field extension �/k of degree at least M , there exists a vector bundle F ′ of rank R defined over � such
that H ∗(X ×k �,F ′ ⊗ (E ⊗k �)) = 0.

(iv) There exists a vector bundle F on X defined over k of rank R · M such that H ∗(X,F ⊗ E) = 0.

Proof. We will show that (i) ⇒ (iii) ⇒ (iv). Note that (iv) ⇒ (ii) is obvious, and (ii) ⇔ (i) was discussed in the
introduction.

(i) ⇒ (iii): We follow the proof of Theorem 1 in steps 1–5. To find a point outside the divisor ΘE ⊂ P(V ), we pass
to a field extension �/k with at least deg(ΘE) elements. Thus, any field extension of degree at least M will do by our
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choice of M above. By [1, Lemma 2.2], there exists a point in P(V )(�) outside ΘE . This point corresponds to a vector
bundle F ′ defined over � such that H ∗(X ×k �,F ′ ⊗ (E ⊗k �)) = 0.

(iii) ⇒ (iv): We take a finite field extension �/k of degree M . Now the field extension �/k is Galois with Galois
group Gal = Gal(�/k). Setting F := ⊕

γ∈Gal γ
∗F ′ we obtain a vector bundle of rank R · [� : k] which is defined

over k, and H 0(X,F ⊗ E) = 0. �
Remark. The rank of the cohomologically orthogonal bundle F in Theorem 1 (the case of infinite fields) is indepen-
dent of the genus g of our curve X. However, the number M in Theorem 2 depends on g. Thus, in the case of a finite
field the rank of F depends on g.
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