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Abstract

Extending to all probability measures the notion of μ-equicontinuous cellular automata introduced for Bernoulli measures by
Gilman, we show that the entropy is null if μ is an invariant measure and that the sequence of image measures of a shift ergodic
measure by iterations of such automata converges in Cesàro mean to an invariant measure μc. Moreover, this cellular automaton
is still μc-equicontinuous and the set of periodic points is dense in the topological support of the measure μc. The last property is
also true when μ is invariant and shift ergodic. To cite this article: P. Tisseur, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur une classe d’automate cellulaire de faible complexitée. Nous étendons à toute mesure de probabilité, la notion d’automate
cellulaire μ-equicontinus introduit en premier lieu pour des mesures de Bernoulli par Gilman et nous montrons que l’entropie de
l’automate est nulle si μ est invariante mais aussi que la suite des mesures images d’une mesure ergodique pour le décalage converge
en moyenne de Cesàro vers une mesure invariante notée μc. De plus, cet automate cellulaire a encore la particularité d’être μc-
equicontinu et l’ensemble des points périodiques est dense dans le support topologique de la mesure μc. Cette dernière propriété
est aussi vraie pour cette classe d’automate si la mesure μ est invariante et shift ergodique. Pour citer cet article : P. Tisseur, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction, definitions

Let A be a finite set. We denote by AZ, the set of bi-infinite sequences x = (xi)i∈Z where xi ∈ A. We endow AZ with
the product topology of the discrete topologies on A. A point x ∈ AZ is called a configuration. The shift σ :AZ → AZ

is defined by: σ(x) = (xi+1)i∈Z. A cellular automaton (CA) is a continuous self-map F on AZ commuting with the
shift. The Curtis–Hedlund–Lyndon theorem states that for every cellular automaton F there exist an integer r and a
block map f from A2r+1 to A such that F(x)i = f (xi−r , . . . , xi, . . . , xi+r ). The integer r is called the radius of the
cellular automaton. For integers i, j with i � j we denote by x(i, j) the word xi . . . xj and by x(i,∞) the infinite
sequence (vn)n∈N such that for all n ∈ N one has vn = xi+n. For any integer n � 0 and point x ∈ AZ, we denote by
Bn(x) the set of points y such that for all i ∈ N, one has F i(x)(−n,n) = F i(y)(−n,n) and by Cn(x) the set of points
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y such that yj = xj with −n � j � n. A point x ∈ AZ is called an equicontinuous point if, for all positive integers n,
there exists another positive integer m such that Bn(x) ⊃ Cm(x). A point x is μ-equicontinuous if for all m ∈ N one
has

lim
n→∞

μ(Cn(x) ∩ Bm(x))

μ(Cn(x))
= 1.

In this Note, we call μ-equicontinuous CA any cellular automaton with a set of full measure of μ-equicontinuous
points. Clearly an equicontinuous point which belongs to

S(μ) = {
x ∈ AZ | μ(

Cn(x)
)
> 0 | ∀n ∈ N

}
,

(the topological support of μ) is also a μ-equicontinuous point. When μ is a shift ergodic measure, the existence of
μ-equicontinuous points implies than the cellular automaton is μ-equicontinuous (see [2]).

These definitions was motivated by the work of Wolfram (see [6]) who proposed a first empirical classification
based on computer simulations. In [2] Gilman introduced a formal and measurable classification by dividing the set of
CA in three parts (CA with equicontinuous points, CA without equicontinuous points but with μ-equicontinuous
points, μ-expansive CA). Gilman’s classes are defined thanks to a Bernoulli measure, not necessarily invariant,
and corresponds to the Wolfram’s simulations based on random entry. Here we study some properties of the
μ-equicontinuous class that allows one to construct easily invariant measures (see Theorem 5) and we try to de-
scribe what kind of dynamic characterizes μ-equicontinuous CA when μ is an invariant measure. Finally, remark that
the comparison between equicontinuity (see some properties of this class in [1] and [4]) and μ-equicontinuity make
more sense when we study the restriction of the automaton to S(μ) (see Section 4 for comments and examples).

2. Statement of the results

2.1. Gilman’s results

Proposition 1. (See [3].) If ∃x and m 	= 0 such that Bn(x)∩σ−mBn(x) 	= ∅ with n � r (the radius of the automaton F )
then the common sequence (F i(y)(−n,n))i∈N of all points y ∈ Bn(x) is ultimately periodic.

In [3] Gilman states the following result for any Bernoulli measure μ. The proof uses only the shift ergodicity of
these measures and can be extended to any shift ergodic measure.

Proposition 2. (See [3].) Let μ be a shift ergodic measure. If a cellular automaton F has a μ-equicontinuous point,
then for all ε > 0 there exists a F -invariant closed set Y such that μ(Y ) > 1 − ε, and the restriction of F to Y is
equicontinuous.

2.2. New results

Proposition 3. The measure entropy hμ(F ) of a μ-equicontinuous and μ-invariant cellular automaton F (with μ not
necessarily shift invariant) is equal to zero.

Proposition 4. If a cellular automaton F has some μ-equicontinuous points where μ is a F -invariant and shift
ergodic measure then the set of F -periodic points is dense in the topological support of μ.

Theorem 5. Let μ be a shift-ergodic measure. If a cellular automaton F has some μ-equicontinuous points, then the
sequence

(μn)n∈N =
(

1

n

n−1∑
i=0

μ ◦ F−i

)
n∈N

converges vaguely to an invariant measure μc.
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Theorem 6. If μ is a shift ergodic measure and F a μ-equicontinuous cellular automaton then F is also a μc-equi-
continuous cellular automaton.

Corollary 7. If μc = limn→∞ 1
n

∑n−1
i=0 μ ◦F−i where μ is a shift ergodic measure and F is a cellular automaton with

μ-equicontinuous points then the set of F -periodic points is dense in S(μc).

3. Sketches of the proofs

3.1. Proof of Proposition 3

Denote by (αp)p∈N the partition of AZ by the 2p + 1 central coordinates and remark that

hμ(F ) = lim
p→∞hμ(F,αp)

where hμ(F,αp) denotes the measurable entropy with respect to the partition αp . Using the Shannon–McMillan–
Breiman Theorem, we can show that ∀p ∈ N, there exists m ∈ N such that

hμ(F,αp) �
∫

lim
n→∞

− logμ(Bm(x))

n
dμ(x) = 0.

3.2. Proof of Theorem 5

It is sufficient to show that for all x ∈ S(μ) and m ∈ N the sequence (μn(Cm(x)))n∈N converges. From Propo-
sition 2 there exists a set Yε of measure greater than 1 − ε such that for all points y ∈ Yε and positive integer
k the sequences (F n(y)(−k, k))n∈N are eventually periodic with preperiod ppε(k) and period pε(k). We get that
μn(Cm(x) ∩ Yε) = 1

n

∑ppε(k)−1
i=0 μ(F−i (Cm(x)) ∩ Yε) + 1

n

∑n−1
i=ppε(k) μ(F−i (Cm(x)) ∩ Yε) for all x ∈ AZ and integer

k � m. Remark that the first term tends to 0 and the periodicity of the second one implies that limn→∞ μn(Cm(x) ∩
Yε) = 1

pε(k)

∑pε(k)−1
i=0 μ(F−(i+ppε(k))(Cm(x)∩Yε)). Moreover, we have limε→0 μn(Cm(x)∩Yε) = μn(Cm(x)). Since

for all x and m ∈ N one has |μn(Cm(x) ∩ Yε) − μn(Cm(x))| � nε
n

= ε the convergence is uniform with respect to ε.
It follows that we can reverse the limits and obtain that

μc = lim
n→∞

1

n

n−1∑
i=0

μ ◦ F−i
(
Cm(x)

) = lim
n→∞

1

n

n−1∑
i=0

lim
ε→0

μ ◦ F−i
(
Cm(x) ∩ Yε

)

= lim
ε→0

lim
n→∞

1

n

n−1∑
i=0

μ ◦ F−i
(
Cm(x) ∩ Yε

) = lim
ε→0

1

pε(k)

pε(k)−1∑
i=0

μ
(
F−(i+ppε(k))

(
Cm(x)

) ∩ Yε

) = μc

(
Cm(x)

)
.

The invariance of converging subsequences of (μn)n∈N is a classical result.

3.3. Proof of Proposition 4

Since μ is a shift ergodic measure and there exist a μ-equicontinuous points x, for all m ∈ N and z ∈ S(μ) there
exist (i, j) ∈ N

2 such that μ(Cp(z) ∩ σ−(i+p)Br(x) ∩ σ j+pBr(x) =: S) > 0 (r is the radius of the CA). From the
Poincaré recurrence theorem, for all z ∈ S(μ), there exists m ∈ N and y ∈ S such that Fm(y)(−r −p − i, j +p − r −
1) = y(−r −p − i, j +p − r − 1). From the Proof of Proposition 1 (see [3]), the shift periodic point w = . . .www . . .

such that w(−r − p − i, j + p − r − 1) = w = y(−r − p − i, j + p − r − 1) belongs to S and since the F orbit of
each y′ ∈ S ∩ {y′′ ∈ AZ|y′′

l = yl |(−r − p − i � l � j + p − r − 1)} share the same central coordinates, it follows that
Fm(w)(−r − p − i, j + p − r − 1) = w = w(−r − p − i, j + p − r − 1) which implies that Fm(w) = w and permit
to conclude.
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3.4. Proof of Theorem 6 and Corollary 7

Let x be a μ-equicontinuous point. For all m ∈ N, define Ym := ⋃
i,j∈N2(σ−i−mBr(x) ∩ σ j+mBr(x)) (r is the

radius of F ) and Ωm = limn→∞
⋂n

j=0
⋃∞

i=j F i(Ym) (the omega-limit set of Ym under F ). Since μ is a shift er-
godic measure and μ(Br(x)) > 0, for all m ∈ N, we get that μ(Ym) = 1 and consequently μc(Ωm) = 1. Let
Λ(F) be the omega-limit set of AZ. Using the eventual periodicity of (F n(x)(−r, r))n∈N (see Proposition 1), it
can be proved that the omega-limit set of Br(x) is a finite union of sets Br(zl) ∩ Λ(F) (0 � l � p − 1). This im-
plies that Ωm = ⋃

z∈[z0...zp−1]
⋃

i,j∈N2(σ−i−mBr(z) ∩ σ j+mBr(z)) ∩ Λ(F) and it follows that for all z ∈ S(μc) and

k ∈ N, the inequality μc(Ck(z) ∩ Ωk) > 0 implies that there always exist a point z′ and integers i, j � m such that
μc(Cp(z) ∩ σ−(i+p)Br(z

′) ∩ σ j+pBr(z
′)) > 0. Using final arguments of the proof of Proposition 4, the last inequal-

ity is sufficient to show Corollary 7. For any measurable set E, define Eμc = {y ∈ E | limn→∞ μc(Cn(y)∩E)
μc(Cn(y))

= 1}.
For all m ∈ N, define Ω ′

m := ⋃
z∈[z0...zp−1]

⋃
i,j∈N2(σ−i−mBr(z) ∩ σ j+mBr(z))

μc ∩Λ(F) and denote by Ω the set⋂
m∈N

Ω ′
m. Since for all measurable set E, one has μc(E

μc) = μc(E), for all m ∈ N, we get that μc(Ω
′
m) = 1

and consequently μc(Ω) = 1. Since for all y ∈ Ω and k ∈ N there exist integers i, j � k and a point z′ such that
y ∈ σ−i (Br(z

′) ∩ σ jBr(z
′))μc , we obtain that y ∈ B

μc
m (y) which finishes the proof.

4. Example of μ-equicontinuous CA without equicontinuous points

In [2] Gilman gives an example of a μ-equicontinuous CA Fs that has no equicontinuous points. The automaton
Fs act on {0,1,2}Z and is defined thanks to the following block map of radius 1:

∗00 ∗01 ∗02 ∗10 ∗11 ∗12 ∗20 ∗21 ∗22
0 1 0 0 1 0 2 0 2

.

The letter ∗ stands for any letter in {0,1,2}. Considering 0 as a background element, the 2’s move straight down,
1’s move to the left and 1 and 2 collide annihilate each other. In this case the measure μ is a Bernoulli measure on
{0,1,2}Z and the existence of μ-equicontinuous points depends on the parameters p(0),p(1),p(2) of this measure.
In [2] it is shown that if p(2) > p(1) then the probability that a 2 is never annihilated is positive and this implies that
there exist μ-equicontinuous points. Since the existence or non-existence of a sufficient number of 1 in the right side
can always modify the central coordinates one has Cm(x) 	⊂ Bn(x) for all n,m ∈ N which implies that there is no
equicontinuous points.

Note that using Theorems 5 and 6 the automaton Fs is μc-equicontinuous if p(2) > p(1) but the restriction of
Fs to S(μc) always has equicontinuous points (S(μc) = {0,2}N and F :S(μc) → S(μc) is the identity). In [5], we
describe a more complex CA F such that F :S(μc) → S(μc) is μc-equicontinuous, without equicontinuous points
and the invariant measure μc is construct thanks to Theorem 5.
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