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Abstract

A monic polynomial in Fq [t] of degree n over a finite field Fq of odd characteristic is the sum of two monic irreducibles in Fq [t]
of degrees n and n − 1, provided q is larger than an explicitly given bound in terms of n. To cite this article: A.O. Bender, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Décompositions en sommes de deux polynômes irréductibles dans Fq [t]. Un polynôme unitaire f ∈ Fq [t] de degré n à
coefficients dans un corps fini Fq de caractéristique différente de 2 s’écrit comme une somme f = g + h, où g,h ∈ Fq [t] sont des
polynômes unitaires irréductibles de degrés n et n− 1, dès que q est plus grand qu’une borne explicite dépendant uniquement de n.
Pour citer cet article : A.O. Bender, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

When is a polynomial of degree n in Fq [t] the sum of two irreducibles of unequal degrees at most n? This question
is clearly motivated by the Goldbach conjecture which asserts that every even number greater than 2 is the sum of two
primes.

In the function field case, it turns out that a distinction into even and odd elements only plays a role if q = 2 and
that we want to consider only monic polynomials [3, conj. 1.20].

This Note outlines the proofs of the following two theorems, both of which rely heavily on the proof of Theorem 3
quoted below and proved in [2]. Complete proofs of both theorems are given in [1].

Theorem 1. Let Fq be a finite field of odd characteristic and cardinality q and let F be a monic polynomial in Fq [t]
whose degree is at least 2.
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Then for any sufficiently large integer s, there exist irreducible monic polynomials F1 and F2 in Fqs [t] with
deg(F1) = deg(F ) − 1 and deg(F2) = deg(F ) such that

F = F1 + F2.

Theorem 2. Let Fq be a finite field of odd characteristic and cardinality q and let F be a monic polynomial in Fq [t]
whose degree n is at least 2.

Then if q > 8(n + 6)2n2
, there exist irreducible monic polynomials F1 and F2 in Fq [t] with deg(F1) = deg(F ) − 1

and deg(F2) = deg(F ) such that

F = F1 + F2.

2. The result over Fqs [t]

The main tool for the proof is a slight variant of the following theorem:

Theorem 3. (Theorem 1.1 in [2].) Let Fq be a finite field of characteristic p and cardinality q . Let f1, . . . , fn ∈
Fq [t, x] be irreducible polynomials whose total degrees deg(fi) satisfy p � deg(fi)(deg(fi)− 1) for all i. Assume that
the curves Ci ⊆ P2

Fq
defined as the Zariski closures of the affine curves

fi(x, t) = 0

are smooth. Then, for any sufficiently large s ∈ N, there exist a, b ∈ Fqs such that the polynomials f1(at + b, t),

. . . , fn(at + b, t) ∈ Fqs [t] are all irreducible.

We let F(t) be a monic polynomial in Fq [t] of degree n at least 2. Now suppose there exists an f1 ∈ Fq [x, t]
of total degree n − 1 such that both f1 and f2 = −f1 + F(t) satisfy the assumptions of Theorem 3. Then we can
apply that theorem and get a and b in some Fqs for which both fi(at + b, t) are irreducible in Fqs [t]. In view of
F = f1 + (−f1 + F), we then have a representation of F(t) as the sum of two irreducibles in Fqs [t], one of degree at
most n − 1 and the other of degree n.

For the construction of such an f1, we observe that both irreducibility and smoothness are genericity conditions.
The proof of Theorem 3 shows that the conditions p � deg(fi)(deg(fi) − 1) are imposed to ensure separability of the
Gauss maps of the curves Ci , which is a genericity condition as well.

The polynomial f2(at + b, t) is always monic, but f1(at + b, t) will in general not be. In order to ensure monicity
of f1, the proof of Theorem 3 has to be suitably modified.

We start with a short review of the proof of Theorem 3, for which the following definition is pivotal.
If k is a field, a finite k-scheme X is said to have at most one double point if n(X) � r(X)− 1, where r(X) denotes

the rank and n(X) the geometric number of points of X (this paragraph is quoted from [2]).

Definition 4. (See [5].) A finite morphism f :C → P1
k is called generic if f −1(x) has at most one double point for all

x ∈ P1
k .

The proof shows that projections of the curves Ci to P1 from a generically chosen point in P2 are generic morphisms
βi with pairwise disjoint ramification loci. This leads to the conclusion that the function field extensions associated to
the βi have the full symmetric group as Galois group. Then the Cebotarev Density Theorem is used to find irreducible
fibres of the βi which in turn give rise to irreducible polynomials fi(at + b, t).

If, without loss of generality, we fix a = 1, the leading coefficient of f1(t + b, t) is the sum of the coefficients of
the terms of total degree n − 1. We parametrize the polynomials f1(c) in two variables x, t of total degree n − 1 by
their coefficient vectors (c) in an affine space AI . Then every element in the family F of such polynomials f1(c) for
which f (t + b, t) is monic for all b has coefficients (c) in an affine subspace H ⊂ AI of codimension one.

For any f1 ∈ F, we set f2 = −f1 + F and let Ci be the Zariski closure of fi = 0 in the projective plane. In the
projectivised coordinates (x, t, z), we denote by βi the projections from the point M = (1,1,0) to P1(x, z). All affine
lines containing the point M are of the form x = t + b. One easily checks that the monicity assumption implies that
M /∈ Ci and so the projections βi are morphisms.
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There are two groups of conditions we need to impose on the coordinate vector (c) parametrizing the two fi . The
first group consists of the properties listed as assumptions in Theorem 3 and these are smoothness, irreducibility and
separability of the Gauss maps of both curves Ci . The second group of conditions is needed to ensure that the proof
of Theorem 3 goes through with the fixed value of a = 1. In this group we have the conditions that the projection β1

be generic and that β2 be generic with the exception of the point at infinity whose fibre intersects C2 in a point of
order n. Furthermore, we have to demand that no line of the form x = t + b be tangent to both curves Ci and that the
line at infinity, which is tangent to C2, not be tangent to C1.

For any one of these conditions, we need to show that the subscheme of H whose associated fi(c) satisfy it is both
Zariski open and nonempty. The argument for showing openness uses the following classical result from elimination
theory [4, Cor. 14.3]: The condition for a polynomial of fixed degree and fixed number of variables to split into factors
of specified degree and multiplicity is the vanishing of certain polynomials in the polynomial’s coefficients. For every
condition, nonemptiness is ensured by constructing examples of the fi which satisfy that particular condition for any
given F(t). Since the intersection of nonempty open subschemes of H is nonempty, openness and nonemptyness for
each one of the conditions show that there exist (c) whose associated polynomials fi satisfy all of them.

Smoothness and irreducibility are straightforward to check along the lines sketched in the previous paragraph.
Separability of the Gauss maps for the case of p � deg(fi)(deg(fi) − 1) is proved in the last paragraph of the proof

of Proposition 3.1 in [2]. For p | deg(fi)(deg(fi) − 1), we need to consider the splitting behaviour of the polynomials
describing the intersection of the curves Ci with a tangent.

As for the conditions on the morphisms βi , part of the proof of Theorem 3 shows that by separability of the Gauss
maps, there are only finitely many tangents to the Ci which intersect these curves other than in at most one double
point. A rescaling of one of the variables therefore suffices to let all of them assume a form different from x = t + b.

The condition on the tangent at infinity is again straightforward.
Now let s be large enough such that (c) ∈ HFqs exists with all conditions in both groups satisfied.
Since the projection β1 of C1 is generic, the rest of the proof of Theorem 3 goes through for f1 and we can

conclude that the Galois group associated to β1 is indeed the full symmetric group. As for C2, the projection has one
ramification point of order n above the point at infinity and is generic otherwise. We note that the symmetric group of
n elements is generated by one element of order n and one transposition, so as in the case of generic projection to P1,
we get the full symmetric group as Galois group.

The two conditions on the tangents to the curves Ci were chosen precisely to ensure that the ramification loci of
the βi do not intersect, which is necessary for proceeding with the proof of Theorem 3.

Finally we need to let s be large enough for the application of the Cebotarev Density Theorem and then we find b0

such that both fi(t + b0, t) in Fqs [t] are monic and irreducible.

3. Application to the case Fq[t]

We have to derive explicit lower bounds for the size of qs in Theorem 1 and then show that a q larger than the
stated bound satisfies them.

For every condition on the fi we pursue the following approach. We estimate the degree of the closed subscheme
of H which consists of the unusable points (c) for which the associated Ci do not satisfy the respective condition.
Using the fact that this closed subscheme is contained in a hypersurface of that degree, we remove from H an upper
bound for the number of points over Fq on such a hypersurface.

Doing this for every condition imposed on the fi , we show that the given lower bound on q implies that there is at
least one point (c) in H over Fq for which the associated Ci satisfy all conditions.

Finally, we have to check that the given lower bound on q suffices to apply the Cebotarev Density Theorem at the
end of the proof of Theorem 3.
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