
C. R. Acad. Sci. Paris, Ser. I 346 (2008) 1119–1122
http://france.elsevier.com/direct/CRASS1/

Mathematical Problems in Mechanics

Control of irrigation channels with variable bathymetry and time
dependent stabilization rate

Abdou Sene a, Bocar Amadou Wane b, Daniel Y. Le Roux b

a UFR de sciences appliquées et technologie, Université Gaston-Berger, B.P. 234 Saint-Louis, Sénégal
b Département de mathématiques et statistique, Université Laval, G1K 7P4 Québec, Québec, Canada

Received 18 October 2007; accepted after revision 4 September 2008

Available online 27 September 2008

Presented by Philippe G. Ciarlet

Abstract

This Note deals with the regulation of water flow in open-channels employing the shallow-water model with variable bathymetry.
By using energy a priori estimation technics and the compactness theory, we build a stabilizing boundary control. The control law is
based on an arbitrary choice of the time dependent stabilization rate r . Say, the energy decreases like the exponential of − ∫ t

0 r(s)ds

when the time t tends to ∞. To cite this article: A. Sene et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Contrôle des canaux d’irrigation à bathymétrie variable et à vitesse de stabilisation dépendant du temps. Dans cette Note
nous traitons un problème de contrôle des canaux d’irrigation à bathymétrie variable. En utilisant la technique d’estimation a priori
de l’énergie et la théorie de la compacité, nous construisons un contrôle frontière. Ce dernier est basé sur le choix d’un taux de
stabilisation r arbitraire et pouvant varier en fonction du temps. En effet, l’énergie décroît comme l’exponentielle de − ∫ t

0 r(s)ds

quand le temps t tend vers ∞. Pour citer cet article : A. Sene et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The shallow-water (SW) equations are the hyperbolic partial differential equations used in hydraulics to describe
the behavior of the flow in open channels. The regulation of water level and water flow we are dealing with in this
paper, can be done by using gate openings. This problem has been addressed for a long time in engineering in dynamics
of canals and rivers. Interesting results have been published in the literature when the bathymetry has a constant or
linear representation, and the stabilization rate is constant. Balogun et al. [1] and Malaterre [3] have developed LQ
control on the basis of finite dimensional discrete approximations of the SW equations. Litrico and Georges [2], Xu
and Sallet [5] have developed robust H∞ control based on a simple model approximation using a linear diffusive wave
equation. Further, Xu and Sallet [5] analyzed Boundary PI regulation on the basis of a linear PDE model around a
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Fig. 1. A channel with discharge.

steady-state. In this paper, we establish a new method to build a controller in the case of an arbitrary bathymetry and
time dependent stabilization rate. Our results are directly applicable to various types of control gates.

In Section 2 we perform the flow modeling in the case of a canal with arbitrary bed shape and the model equations
are obtained. In Section 3, we establish the main results of this paper. By using a priori energy estimation technics,
a controller is proposed, depending on an arbitrary nonnegative function r(t) which represents the stabilization rate.
The energy decreases like the exponential of − ∫ t

0 r(s)ds when the time t tends to ∞. This stabilization rate is only
required to verify

∫ ∞
0 r(t)dt = +∞. Some concluding remarks complete the study.

2. Governing equations in open channels

The one dimensional SW model used in the present paper is derived from the incompressible Navier–Stokes (NS)
model. Let h be the height of the fluid column, q the flow, and η the bathymetry function, as shown in Fig. 1. The
model equations are
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where qoff is the offtake flow along the canal, loff is the length of the irrigation hole, Lx and Ly are respectively

the length and the width of the canal, and the correction coefficient α is given by α = bottom velocity
mean velocity . The boundary

conditions are q(t,0) = q0(t), q(t,Lx) = qLx (t), and the initial ones read h(0, x) = h0(x), q(0, x) = q0(x). Note
that for linear representations of the bathymetry, (1) is similar to that obtained in [4] where S stands for Lyh, and

Φ(S,Q,q) corresponds to (α2−1)q2

2h2
∂η
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+ qoff
loff

q
h

. Note that α2−1
2

∂η
∂x

characterizes the nature of the bottom represented

by −gH̄ R̄3/4

K2 in [4].

2.1. Steady-state

The stabilization process consists in finding controllers, say inflows and outflows, such that the water level and
velocity always approach the steady state denoted by (h̄, q̄). The spatial derivatives of h̄ and q̄ are obtained from (1)

as

(a)
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loff
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Integrating (2a) leads to q̄(x) = q̄0 +Q̄off(x), with q̄0 = q̄(x = 0) and Q̄off(x) = − ∫ x

0
qoff(s)

loff
ds. Let α > 0 and assume

that the data qoff, loff, q̄0 and the bathymetry function η(·) are such that h̄ > α, e.g. this assumption is met if the source
flow q̄0 is greater than the offtake flow |Q̄off(·)|, γ1 (defined in (5)) is positive, and ∂η

∂x
< 0. Since the stabilization

is performed in order to keep the solution (h, q) of (1) close enough to the steady state, then h is expected to be
positive.
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3. The controller building process

Let (h̄, q̄) be the steady state of system (1). We introduce the residual state (h̃, q̃) as the difference between the
present state (h, q) and the steady state (h̄, q̄), and hence h̃(x, t) = h(x, t) − h̄(x), q̃(x, t) = q(x, t) − q̄(x). Then,
using the assumptions h̃ � h̄ and q̃ � q̄ to linearize (1), we deduce that (h̃, q̃) is the solution of

Ly
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= 0, (3)
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with the controllers q̃(t,0) = 0 and q̃(t,Lx) = q̃Lx (t), and the initial conditions h̃(0, x) = h̃0(x) and q̃(0, x) = q̃0(x),
where the functions β0, γ0β1, γ1 are defined as
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In the sequel we assume γ1 > 0, and β1(Lx) � 0, i.e. there is outflow on {x = Lx}. The condition on γ1 is equivalent
to the subcritical or fluvial flow, i.e. | q̄

Ly h̄
| �

√
gh̄. That is, the flow velocity is less than the wave velocity.

In [5] Xu proved that (3), (4) is equivalent to an hyperbolic symmetric system. He showed that the system is
exponentially stable by using the semi-group method. Here, we generalize the results obtained in [5] by considering a
variable bathymetry and a time dependent stabilization rate.

3.1. A priori energy estimation and controller building

The following system is the weak formulation of (3)–(4): ∀(Ψ,Φ) ∈ H 1(]0,Lx[),
Lx∫
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with h̃(x,0) = h̃0(x) and q̃(x,0) = q̃0(x). Let us estimate the variation of the energy
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in order to define the controller qLx on {x = Lx}. For this purpose, let (Ψ,Φ) = (h̃, q̃) in (6)–(7). Hence,
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The RHS of (8) is a second order polynomial Q with respect to q̃Lx . Let r(t) be any positive real function, and q̃Lx be
the real part of
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(
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)−b + √
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. (10)

Note that c is bounded by the energy E, and then the controller q̃Lx defined in (10) necessarily vanishes when E tends
to 0. If r is continuous and very large at 0, q̃Lx may be also. However, in any case q̃Lx exponentially tends to zero.
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Since a is negative, i.e. β1(Lx) is positive, we have Q(q̃Lx ) � −r(t)E(t). Hence, the energy decreases ex-
ponentially with a rate depending on the function r(·) which can be chosen arbitrarily. Indeed, Eq. (8) gives
1
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E(t) = Q(q̃Lx ) � −r(t)E(t), i.e.

Lx∫
0

Ly

(
γ1h̃

2(t) + q̃2(t)
)

dx � exp

(
−2

t∫
0

r(s)ds

) Lx∫
0

Ly

(
γ1(h̃

0)2(x) + (q̃0)2(x)
)

dx.

Theorem 3.1. With the feedback law (10), the decay rate of the order of the function r(·) given a priori arbitrarily is
guaranteed.

Proof. The result is achieved by combining the a priori energy estimation and the Galerkin method. �
4. Conclusions

In this Note, a general sufficient stabilization condition for flow and water levels in open channels has been de-
scribed and analyzed around the steady state. A control law design based on this stabilization condition is applied to
open channels. The main theoretical result of the paper is the generalization based on time dependent stabilization rate
with variable bathymetry.

Note that this work is done on a linearized version of (1). However, we are also investigating the nonlinear case. As
far as this latter is concerned, the energy a priori estimation is achieved, but the main issue one faces is the convergence
of finite dimensional problems in the Galerkin method for existence of solution. In future research we will also address
the 2D SW control using the same approach.
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