

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 1063-1065

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Harmonic Analysis

An extension of the Córdoba–Fefferman theorem on the equivalence between the boundedness of certain classes of maximal and multiplier operators

Paul Hagelstein^a, Alexander Stokolos^b

^a Department of Mathematics, Baylor University, Waco, TX 76798, USA ^b Department of Mathematics, DePaul University, Chicago, IL 60614, USA

Received 2 August 2008; accepted 4 September 2008

Available online 11 October 2008

Presented by Jean-Pierre Kahane

Abstract

The Córdoba–Fefferman theorem involving the equivalence between boundedness properties of certain classes of maximal and multiplier operators is extended utilizing the recent work of Bateman on directional maximal operators as well as the work of Hagelstein and Stokolos on geometric maximal operators associated to homothecy invariant bases of convex sets satisfying Tauberian conditions. *To cite this article: P. Hagelstein, A. Stokolos, C. R. Acad. Sci. Paris, Ser. I 346 (2008).* © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Généralisation du théorème de Córdoba–Fefferman sur l'équivalence du caractère borné de certains opérateurs maximaux et de multiplicateurs. Les travaux récents de Bateman sur les opérateurs maximaux relatifs à des directions, et ceux des auteurs sur les opérateurs maximaux associés à des bases d'ensembles convexes invariantes par homothétie et vérifiant des conditions tauberiennes permettent d'étendre le théorème de Fefferman et Córdoba sur l'équivalence du caractère borné de certains opérateurs maximaux et de multiplicateurs. *Pour citer cet article : P. Hagelstein, A. Stokolos, C. R. Acad. Sci. Paris, Ser. I 346* (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

It is well known that maximal and multiplier operators in harmonic analysis are fundamentally related. For example, the weak type bounds of the Hardy–Littlewood maximal operator on \mathbb{R}^1 are closely connected to the L^p bounds of the Hilbert transform for 1 (see, for instance, Chapter II of [5]). However, the interconnections between maximal and multiplier operators are still not completely understood, especially in higher dimensional settings. That being said, significant progress on this issue was made in the mid-1970s with the results of A. Córdoba and R. Fefferman in the context of a specific but useful class of maximal and multiplier operators [3]. Somewhat surprisingly, recent work on geometric maximal operators due to Bateman, Katz, and the authors [1,2,4] has enabled a substantial strengthening of Córdoba and Fefferman's results. The purpose of this note is to show how this recent work in the theory of geometric

E-mail addresses: paul_hagelstein@baylor.edu (P. Hagelstein), astokolo@math.depaul.edu (A. Stokolos).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.09.010

Fig. 1. The definition of P_{θ} .

maximal operators may be used to extend the results of Córdoba and Fefferman, giving us an improved understanding of the interconnections between boundedness properties of maximal and multiplier operators in Fourier analysis.

We now recall the result of Córdoba and Fefferman found in [3]. Let $\theta_1 > \theta_2 > \theta_3 > \cdots$ be a decreasing sequence of angles between 0 and $\pi/2$. Let the geometric maximal operator M_{θ} be defined by

$$M_{\theta} f(x) = \sup_{x \in R} \frac{1}{|R|} \int_{R} |f(y)| \, \mathrm{d}y$$

where the supremum is over the collection of rectangles in the plane of arbitrary eccentricity oriented in one of the directions θ_i . Associated to M_{θ} is the multiplier operator T_{θ} given by

$$\widehat{T}_{\theta}\widehat{f}(\xi) = \chi_{P_{\theta}}(\xi) \cdot \widehat{f}(\xi)$$

where P_{θ} is the polygonal domain of \mathbb{R}^2 as indicated in Fig. 1.

Córdoba and Fefferman proved the following:

Theorem 1. (See [3].) Let M_{θ} and T_{θ} be as indicated above.

- (a) If M_{θ} is bounded on $L^{p}(\mathbb{R}^{2})$, then T_{θ} is bounded on $L^{q}(\mathbb{R}^{2})$ where $q = \frac{2p}{p-1}$.
- (b) If T_{θ} is bounded on $L^{p}(\mathbb{R}^{2})$ for some p > 2 and M_{θ} satisfies the Tauberian condition

$$\left|\left\{x: M_{\theta} \chi_{E}(x) > \frac{1}{2}\right\}\right| \leq C|E|,$$

then M_{θ} is of weak type $\left(\left(\frac{p}{2}\right)', \left(\frac{p}{2}\right)'\right)$.

Two recent and seemingly unrelated results regarding geometric maximal operators will enable us to strengthen the above result of Córdoba and Fefferman. The first is from the work of Hagelstein and Stokolos on geometric maximal operators satisfying Tauberian conditions.

Theorem 2. (See [4].) Let \mathcal{B} be a homothecy invariant collection of convex sets in \mathbb{R}^2 . Define the maximal operator $M_{\mathcal{B}}$ by

$$M_{\mathcal{B}}f(x) = \sup_{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R} |f|.$$

Suppose for some $0 < \alpha < 1$ there exists a positive finite constant C_{α} such that

 $\left|\left\{x: M_{\mathcal{B}}\chi_{E}(x) > \alpha\right\}\right| \leq C_{\alpha}|E|$

holds for every measurable set E in \mathbb{R}^2 . Then $M_{\mathcal{B}}$ is bounded on $L^p(\mathbb{R}^2)$ for sufficiently large p. In particular, there exists $p_{\alpha} < \infty$ depending only on α , and C_{α} such that $M_{\mathcal{B}}$ is bounded on $L^p(\mathbb{R}^2)$ for all $p > p_{\alpha}$.

The result of Bateman of interest here (see also the related paper [2]) is the following.

Theorem 3. (See [1].) Let Ω be a set of directions in \mathbb{R}^2 , and let M_Ω be the maximal operator associated to all rectangles oriented in those directions. If M_Ω is bounded on $L^q(\mathbb{R}^2)$ for some $1 < q < \infty$, then M_Ω is bounded on $L^p(\mathbb{R}^2)$ for all 1 .

These three theorems may be combined to yield the following stronger version of Theorem 1 via a surprisingly short and direct proof.

Theorem 4. Let M_{θ} and T_{θ} be as indicated above.

(a) If M_{θ} is bounded on $L^{p}(\mathbb{R}^{2})$ for some $1 , then <math>M_{\theta}$ and T_{θ} are bounded on $L^{q}(\mathbb{R}^{2})$ for all $1 < q < \infty$. (b) If M_{θ} satisfies the Tauberian condition

$$\left|\left\{x: M_{\theta}\chi_{E}(x) > \frac{1}{2}\right\}\right| \leq C|E|,$$

then M_{θ} and T_{θ} are bounded on $L^q(\mathbb{R}^2)$ for all $1 < q < \infty$.

Proof. (a) M_{θ} is clearly a directional maximal operator of the type considered in Theorem 3. As by hypothesis it is bounded on $L^{p}(\mathbb{R}^{2})$ for some $1 we see by Theorem 3 that <math>M_{\theta}$ is bounded on L^{q} for all $1 < q < \infty$. By Theorem 1 we then see T_{θ} is bounded on $L^{p}(\mathbb{R}^{2})$ for $2 \leq p < \infty$. By duality we then see T_{θ} is bounded on $L^{q}(\mathbb{R}^{2})$ for $1 < q < \infty$.

(b) We are given that M_{θ} satisfies a Tauberian condition with respect to 1/2. By Theorem 2 we then see that M_{θ} must be bounded on $L^{p}(\mathbb{R}^{2})$ for sufficiently large p. Applying part (a) we then achieve the desired result. \Box

By Theorem 4, we see that the L^p boundedness condition on T_θ in part (b) of Theorem 1 is rendered unnecessary – that in fact the desired conclusion follows just from the (previously considered weak) Tauberian condition on M_θ . The amount of information that can be gleaned just from the L^p boundedness of T_θ remains unclear, however, and suggests the following problem certainly worthy of subsequent research:

Problem. Let M_{θ} and T_{θ} be as indicated above. Suppose T_{θ} is bounded on $L^{p}(\mathbb{R}^{2})$ for some p > 2. Must T_{θ} and M_{θ} be bounded on $L^{q}(\mathbb{R}^{2})$ for all $1 < q < \infty$?

References

- [1] M. Bateman, Kakeya sets and directional maximal operators in the plane, arXiv: math/0703559v1.
- [2] M. Bateman, N.H. Katz, Kakeya sets in Cantor directions, Math. Res. Lett. 15 (1) (2008) 73-81.
- [3] A. Córdoba, R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Natl. Acad. Sci. USA 74 (2) (1977) 423–425.
- [4] P. Hagelstein, A. Stokolos, Tauberian conditions for geometric maximal operators, Trans. Amer. Math. Soc., in press.
- [5] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.