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Abstract

For any positive integer N let μN be the group of the N th roots of unity. In this note we shall study the Q-linear relations among
the values of multiple polylogarithms evaluated at μN . We show that the standard relations considered by Racinet do not provide
all the possible relations in the following cases: (i) level N = 4, weight w = 3 or 4, and (ii) w = 2, 7 < N < 50, and N is a power
of 2 or 3, or N has at least two prime factors. We further find some (presumably all) of the missing relations in (i) by using the
octahedral symmetry of P1 − ({0,∞} ∪ μ4). We also prove some other results when N = p or N = p2 (p prime � 5) by using the
motivic fundamental group of P1 − ({0,∞} ∪ μN). To cite this article: J. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Valeurs de polylogarithmes multiples en des racines de l’unité. Soient N un entier positif et μN le groupe des racines N -
ièmes de l’unité. Nous étudions les relations Q-linéaires entre les valeurs de polylogarithmes multiples évalués en ces racines
de l’unité. Nous montrons que les relations standard considérées par Racinet ne fournissent pas toutes les relations dans les cas
suivants : (i) N = 4, poids w = 3 ou 4, et (ii) w = 2, 7 < N < 50, et N est une puissance de 2 ou 3, ou N a au moins deux facteurs
premiers. Dans le cas (i), nous trouvons des (sans doute, toutes les) relations manquantes à l’aide de la symétrie octaédrale de
P1 − ({0,∞} ∪ μ4). Utilisant le groupe fondamental motivique de P1 − ({0,∞} ∪ μN), nous obtenons des résultats additionnels
quand N = p ou N = p2 (p premier � 5). Pour citer cet article : J. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Double shuffle relations have played significant roles in the study of multiple zeta values in recent years. These
relations can be easily generalized to multiple polylogarithm values at roots of unity (MPVs):

Lis1,...,sn(ζ1, . . . , ζn) :=
∑

k1>···>kn>0

ζ
k1
1 · · · ζ kn

n

k
s1
1 · · ·ksn

n

, (s1, ζ1) �= (1,1), (1)

where ζj ’s run through N th roots of unity. We call N the level and w := s1 + · · · + sn the weight. One major problem
is to determine the dimension d(w,N) of the Q-vector space M P V(w,N) spanned by these values.
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In [7], Racinet listed the following relations: double shuffle relations and their regularized versions (by regularizing
both the divergent integrals and divergent series representing MPVs), (regularized) distributions, and weight one
relations. We can also add the lifted relations obtained by multiplying the above relations by any MPV and then
expanding all the products by shuffle relations (see [8]). We will call these standard relations. By intensive MAPLE
computation it is shown [8] that in many cases these relations cannot produce all the possible Q-linear relations. For
example, standard relations imply only d(3,4) � 9 which is one more than the bound given by [4, 5.25]. Concretely,
from standard relations MAPLE confirms the following

Fact: Every MPV of weight 3 and level 4 can be written explicitly

as a linear combination of the nine MPVs appearing in (2), (∗)

and no further Q-linear relations between these values can be deduced from the standard relations. But by GiNac [6]
and EZface [1] the following is found numerically (see [8, Remark 10.1])

5Li1,2(−1,−i) = 46Li1,1,1(i,1,1) − 7Li1,1,1(−1,−1, i) − 13Li1,1,1(i, i, i) + 13Li1,2(−i, i)

− Li1,1,1(−i,−1,1) + 25Li1,1,1(−i,1,1) − 8Li1,1,1(i, i,−1) + 18Li2,1(−i,1). (2)

In this note, we shall prove (2) by the explicit relations in (∗) using the octahedral symmetry of P1 − ({0,∞} ∪ μ4)

where μN is the set of N th roots of unity. We can treat the weight 4 case similarly.
The result above in level 4 shows that the standard relations may be insufficient to determine d(w,N). On the

other hand, Deligne and Goncharov [4, 5.25] provide some closed formulae for upper bounds of d(w,N) for all w

and N by studying the motivic fundamental group of P1 − ({0,∞} ∪ μN) in the framework of mixed Tate motives
over the ring of S-integers of a number field. For example, one can deduce the bound d(w,4) � 2w for all w. Further,
Goncharov [5] defines some pro-nilpotent bi-graded Lie algebra D using standard relations and then relates D to the
motivic fundamental Lie algebra in lower depth cases. Using this we shall improve the bounds of d(w,N) in [4] for
all levels N = p and N = p2 (p � 5 a prime).

To save space, throughout this note we will adopt the notation of [4] without further explanation.

2. Incompleteness of standard relations in MPV(w,4)

Fix N = 4 throughout this section. In what follows we shall describe a process suggested by Deligne to verify that
the standard relations cannot produce all possible Q-linear relations in M P V(w,4).

Observe that the vector space freely generated by basis vectors corresponding to regularized MPVs of weight 3 and
level 4 is dual to the degree 3 part of the free associative algebra Q〈〈e0, eζ 〉〉ζ∈μ4 . One expects that M P V(w,4)w�1
is a weighted polynomial algebra with 2, 1, 2, and 3 generators in weight 1 to 4. The reason is that ι(LieUω) should
be a Lie algebra freely generated by one element in each degree so that the dimension of degree n part is given by
1
n

∑
d|n μ(n/d)2d − δ1,n (see [2, Ch. II, §3 Thm. 2]).

If one takes the space M P V(3,4) modulo the products of MPVs in lower weights one should get a quotient space
of dimension 2 and one knows its dimension � 2. However, one can only prove the bound 3 by the standard relations
as follows. Consider the subspace generated by the following elements:

I. For each MPV of weight 1 and MPV of weight 2, the linear combination of weight 3 MPVs expressing their
shuffle product by Chen’s iterated integrals. This gives 5 × 25 elements.

II. Same for the stuffle product (quasi-shuffle as called by Hoffman) corresponding to the coproduct Δ∗ in [7].
Plainly, these elements are linear combination of weight 3 MPVs expressing their stuffle products by series
expansions (1). This gives 4 × 20 elements.

III. Distribution relations in weight 3: expressing the coefficient of a “convergent” monomial in e0 and eα (α = ±1)
as a multiple of the sum of the coefficients of the monomials deduced from it by replacing eα by eβ with β2 = α.
There are 12 “convergent” monomials to consider: (e0 or e−1)(e0 or e1 or e−1)(e1 or e−1).

IV. Six regularized distribution relations in weight 3 (in [7, Prop. 2.26], change σn/d = 1 to σd = 1).

Elements from I to IV can be put into a 223×125 matrix. By MAPLE one can verify its rank is only 122. Moreover,
it is not hard to find three Q-linearly independent relations which produce three vectors in the degree 2 part of the Lie
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algebra denoted by dmrd0 in [7]. In weight 4 the same procedure produces eight vectors instead of three which means
one needs five more relations besides the standard ones.

3. Non-standard relations from octahedral symmetry of P1 − ({0,∞} ∪ μ4)

The punctured Riemann sphere P1 − ({0,∞} ∪ μ4) clearly possesses an octahedral symmetry. To use it one can
adopt a system of tangent vectors stable (up to multiplication by μ4) by the octahedral group. Hence one may take the
tangential base points 10 and (−2)1 (see [3]) and define the C-linear map ρ : Q〈〈e0, eζ 〉〉ζ∈μ4 → Q〈〈e0, eζ 〉〉ζ∈μ4 by

ρ : e0 → e1 → ei → e0, e∞ → e−1 → e−i → e∞.

Let 0 < ε < 1/3 and Cε be the path A1 . . .A6 in the complex plane shown in the above picture, where A2,A4
and A6 are the quarter circles of radii ε, 2ε and 2ε, respectively, oriented clockwise. Then by the property of iterated
integrals

1 =
∫
Cε

∞∑
n=0

Ω◦n =
∫
A6

∞∑
n=0

Ω◦n
∫
A5

∞∑
n=0

Ω◦n · · ·
∫
A1

∞∑
n=0

Ω◦n, where Ω =
∑

a∈μ4∪{0}

dz

z − σ(a)
ea. (3)

Replacing the straight path 10 → (−1)1 by the straight path 10 → (−2)1 changes dch(σ ) to

dch′(σ ) = exp
(
(log 2)e1

)
dch(σ )

(see [4, 5.16] for definition of dch(σ )). So regularized integral over the path A1 followed by A2 gives I =
exp(−2πie1/4)dch′(σ ). Thus (3) yields ρ2(I )ρ(I )I = 1, i.e.,

exp
(−2Li1(i)e0

)
ρ2(dch(σ )

)
exp

(−2Li1(i)ei

)
ρ
(
dch(σ )

)
exp

(−2Li1(i)e1
)

dch(σ ) = 1. (4)

By comparing the coefficient of e2e
2
1 in (4) and using Fact (∗) one finally arrives at (2).

From [8, Table 2] one sees that d(4,4) � 21 by the standard relations. The five missing relations can now be found
by comparing the coefficients of e−ie

2
0e−i , e−ie

2
0e−1, e−ie

2
0ei, e−ie

2
0e1, and (e−ie0)

2 in (4).

4. Weight two and level p or p2 cases (p � 5 a prime)

Let G = ι(LieUω) (see [4, (5.12.2)]). By Remark 6.13 of [4] one may safely replace G(�)
N by G through-

out [5]. In particular, Goncharov’s results can now be used to study the structure of Galois Lie algebra G•,•(μN) =∑
w�1, l�1 G−w,−l (μN) graded by the weight w and depth l. Using these we obtain two results improving the bounds

of d(2,p) and d(2,p2) given in [4].

Theorem 1. Let p � 5 be a prime. Then d(2,p) � (5p + 7)(p + 1)/24. If Grothendieck’s period conjecture
[4, 5.27(c)] is true then the equality holds and the standard relations in M P V(2,p) imply all the others.

Proof. One has dim G−2,−1(μp) = p−1
2 and dim G−2,−2(μp) = (p−1)(p−5)

12 by [5, Thm. 2.1, Cor. 2.16]. Define

βN :
2∧

G−2,−1(μN) −→ G−2(μN), a ∧ b −→ {a, b} (5)

where { , } is the Ihara’s Lie bracket [4, (5.13.6)]. Then

dim(kerβp) = 1 p − 1
(

p − 1 − 1

)
− (p − 1)(p − 5) = p2 − 1

. (6)

2 2 2 12 24
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Let DMRD0 (see [7, §3.2, Thm. I]) be the affine subgroup of Π (see [4, 5.7]) defined by only those polynomial
equations satisfied by the coefficients of dch(σ ) which are deduced from the standard relations, plus “2πi = 0”,
as explained in [4, 5.22]. Its Lie algebra dmrd0 is graded by weight and depth, independent of the embedding by
[7, Prop. 4.1] and contains G by [4, 5.22]. Further, Goncharov shows [5, §7.7] that the standard relations provide a
complete list of constraints on the diagonal part of the Lie algebra G in depth � 2, yielding (dmrd0)m,m = Gm,m for
m = −1,−2. Together with (6) this means in the proof of [4, 5.25] one can decrease the bound D(2,p) by (p2 −1)/24
and arrive at the bound (5p + 7)(p + 1)/24.

Grothendieck’s conjecture implies that G = LieR where R is the affine subgroup of Π defined by all the polynomial
equations satisfied by the coefficients of dch(σ ) plus “2πi = 0”. Thus one gets the equality in the theorem and the
completeness of the standard relations. This concludes the proof of the theorem. �

Now let N = p2. By producing some nontrivial element in kerβp2 we can show that

Theorem 2. If p is a prime � 5 then kerβp2 �= 0 and d(2,p2) < p2(p − 1)2/4.

In fact, we find that dim(kerβ25) = 5 and dim(kerβ49) = 35 which implies d(2,25) � 116 and d(2,49) � 449 (see
[8] for details). Further, if Grothendieck’s conjecture holds then equalities follow. With MAPLE one can prove that
d(2,25) � 116 and d(2,49) � 449 by using the standard relations so presumably these relations imply all the others.
Finally, in all the other composite levels (7 < N < 50) of weight 2, namely when N is a 2- or 3-power, or N has at
least two prime factors the standard relations are incomplete (see [8, Table 1]).
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