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Abstract

In this Note we prove that there exists some integer n0 � 1 such that if M is a closed, orientable 3-manifold which is a branched
cover of S3, branched over the figure eight knot with all branching indices equal to a common even integer n � n0, then M has a
finite index cover which fibers over the circle. To cite this article: N. Bergeron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Fibration virtuelle de certains revêtements de S3, ramifiés au-dessus du nœud de huit. Dans cette Note nous démontrons
qu’il existe un entier n0 � 1 tel que si M est une 3-variété compacte orientable qui est un revêtement ramifié de S3, ramifié au-
dessus du nœud de huit et dont tous les indices de ramification sont égaux à un même entier pair n � n0, alors M possède un
revêtement fini qui fibre sur le cercle. Pour citer cet article : N. Bergeron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Jusqu’à l’été dernier le problème, posé par Thurston, de l’existence, au-dessus de toute 3-variété hyperbolique de
volume fini, d’un revêtement fini qui fibre sur le cercle, était complètement mystérieux. Depuis, Ian Agol [1] a résolu
ce problème par l’affirmative pour toute variété vérifiant la conjecture suivante :

Conjecture 0.1 (Haglund–Wise). Le groupe fondamental de toute 3-variété hyperbolique compacte (ou de volume
fini) se plonge virtuellement dans un groupe de Coxeter abstrait à angles droits.

Rappelons qu’un groupe de Coxeter abstrait à angles droits est un groupe de type fini engendré par des éléments
d’ordre deux et tel que les seules autres relations soient des relations de commutations entre certains générateurs.
Dans [8], Haglund et Wise montrent que la Conjecture 0.1 est, de manière remarquable, essentiellement équivalente à
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deux conjectures bien connues, à savoir que les 3-variétés hyperboliques contiennent de nombreuses surfaces incom-
pressibles (immergées) et que les sous-groupes quasi-convexes des groupes fondamentaux de 3-variétés hyperboliques
sont séparables. À l’aide de ces résultats nous vérifions la Conjecture 0.1 pour les variétés arithmétiques standard com-
pactes et les variétés non-arithmétiques de Gromov et Piatetski–Shapiro dans [4]. Dans cette Note nous étendons un
peu ces méthodes pour démontrer le théorème suivant :

Théorème 0.1. Il existe un entier n0 ∈ N�1 tel que si M est une 3-variété compacte orientable qui est un revêtement
ramifié de S3, ramifié au-dessus du nœud de huit et dont tous les indices de ramification sont égaux à un même entier
pair n � n0, alors M possède un revêtement fini qui fibre sur le cercle.

Remarquons que ce résultat doit être valable pour une classe bien plus grande de revêtements ramifiés au-dessus
d’entrelacs hyperboliques arithmétiques. Néanmoins, le nœud de huit est un « petit bijou » qui a souvent servi à illustrer
de nouvelles techniques ; sans compter qu’un énoncé général serait indigeste et que le développement rapide des
travaux d’Haglund et Wise laisse espérer une démonstration de la Conjecture 0.1 pour toutes les variétés Haken dans
un futur proche. Grâce au théorème d’Agol mentionné plus haut cela réduirait la solution affirmative du problème de
la fibration virtuelle à la démonstration de la célèbre conjecture selon laquelle toute 3-variété hyperbolique compacte
est virtuellement Haken (conjecture bien connue pour les revêtements ramifiés que nous considérons).

1. Introduction

Last summer Ian Agol [1] proved the answer to Thurston’s virtual fibering question to be positive for any 3-
manifold whose fundamental group virtually embeds in an abstract right-angled Coxeter group. This may be attacked
using techniques of Haglund and Wise [8].

The purpose of this Note is to illustrate these new techniques on some particularly nice family of examples: some
covers of S3 branched over the figure eight knot. We prove:

Theorem 1.1. There exists some integer n0 � 1 such that if M is a closed, orientable 3-manifold which is a branched
cover of S3, branched over the figure eight knot with all branching indices equal to a common even integer n � n0.
Then M has a finite index cover which fibers over the circle.

Note that these 3-manifolds are shown to be virtually Haken by Baker in [2].

2. An arithmetic knot

The figure eight knot is well known to be an arithmetic knot (it is even the only such knot by Reid). Its fundamental
group Γ identifies with a subgroup of index 24 in the full group of symmetries of the tesselation T of the hyperbolic
3-space H3 by ideal tetrahedrons with angles π/3 between faces. The (Coxeter) group of symmetries of this tesselation
is O(q,Z) factored by its center, where

q(x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 − 3x2

4

and O(q,R) ∼= O(3,1) is made to act on H3 through the projective model. The subgroup of PSL(2,C) (made to act
on H3 through the upper half-space model) corresponding to this tesselation is the Bianchi group PSL(2,Z[ω]) with
ω = e2iπ/3, it contains Γ as an index 12 subgroup. A meridian loop μ around the figure eight knot can be chosen so
that μ is represented by x = ( 1 1

0 1

) ∈ Γ . Given a positive integer n, we denote by Γ (n) the finite index (congruence)
subgroup of Γ which consists of the matrices in Γ ⊂ O(q,Z) which are congruent to the identity mod n in GL(4,Z).

A hyperplane of H3 is a codimension one totally geodesic subspace; note that a hyperplane is isometric to the
hyperbolic plane H2. A Γ -hyperplane is a hyperplane H of H3 such that ΓH := StabΓ (H) acts cocompactly on H .
By reducing mod 4 it is easy to see that the rational sub-quadratic space of (R4, q) generated by the three last vectors of
the canonical basis is anisotropic over Q. Let H be the corresponding hyperplane of H3. It follows from Godement’s
criterion that H is a Γ -hyperplane. We will retain from the arithmeticity of Γ that it contains plenty of such, namely all
the translates g ·H where g ∈ O(q,Q). These form a dense collection H of Γ -hyperplanes in the set of all hyperplanes
of H3.
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Let F be the set of hyperplanes supporting a face of the tesselation T . The hyperplanes in F intersect any suffi-
ciently small horosphere centered at some (ideal) vertex of T along a tiling by equilateral triangles. Hyperplanes in F
are Γ -translates of the three hyperplanes supporting three adjacent faces of a tetrahedron of T . This gives three types
of hyperplanes in F . We will refer to the first type as the one which contains a hyperplane fixed by x. Note that the
hyperplanes in F are not Γ -hyperplanes, they nevertheless project onto finite volume submanifolds of Y = Γ \H3.
Hyperplanes of the first type intersect the boundary torus along a meridian.

3. A space with walls

Let B � B ′ be two open horoballs centered at some (ideal) vertex of T such that their Γ -translates are all disjoint.
Let X = H3 − Γ · B . The group Γ preserves X and acts cocompactly on it. Note that the hyperplanes in F yield
cocompact submanifold of Γ \X.

One may find a finite set of hyperplanes in H such that their Γ -translates of the Hi separate B from the boundary
of B ′. This and the proof of [4, Proposition 2.1] imply the following proposition:

Proposition 3.1. There exists a finite set of hyperplanes H1, . . . ,Hm ∈ H and a positive integer n1 such that for all
n � n1, the projection of the Γ -translates of the Hi induce a decomposition of Y(n) = Γ (n)\H3 as a finite union of
compact contractible sets and of products [0,+∞) × Ti for each boundary torus Ti of Γ (n)\H3.

Adding the hyperplanes in F cuts the tori into triangles. Let W be the reunion of the Γ -translates of the Hi and of
the hyperplanes in F .

We now examine the situation from a metric viewpoint. Each cusp of Y(n) has metrically the structure of a warped
product C = [0,+∞) ×g T with the warping function g : [0,+∞) → R, g(t) = e−t , i.e. the metric is given by
dt2 + g2(t)ds2 where ds2 is the standard Euclidean metric on the corresponding boundary torus T = R2/L, where
L is the lattice of R2 generated by (n,0) and (0, n). On the other hand, let c be a geodesic in H3 and consider the
distance tube Tr(c). For r → +∞, the boundary ∂Tr(c) can be identified with R2/2πerZ where 2πerZ is the set of
vectors (2πerk,0) ∈ R2 with k ∈ Z; it converges metrically to a horosphere. Choose r such that 2πer = n. Now let β

be the isometry of Tr(c) which operates on ∂Tr(c) = R2/2πerZ as the translation (0, n). For n sufficiently large, say
n � n2, ∂(Tr(c)/Z) is metrically close to ∂C. Thus one can glue the tube onto each boundary torus. with a “small”
metric singularity. After smoothing we obtain a metric with curvature close to −1. We denote by V (n) the manifolds
thus obtained, topologically they are obtained by (1,0)-Dehn filling on each cusp of Y(n). (Note that Thurston has
actually shown the existence of constant curvature metrics on these manifolds.)

Each hyperplane in W yields an immersed surface in Y(n); it is compact if the hyperplane is a translate of some
Hi and it is of finite volume if the hyperplane is in F . In the last case we distinguish between hyperplanes of the first
type and the others. The (1,0)-Dehn fillings of the cusps of Y(n) induce a filling of the surfaces corresponding to the
hyperplanes of the first type. These surfaces cut the solid tori into solid cylinder. The two other types of hyperplanes
in F intersect the boundary tori along traces, simple closed curves, that we distinguish into the corresponding two
types. Note that traces of a same type on a same torus are homotopic. Consider a boundary torus Ti ; we may assume
that it corresponds to the cusp at infinity. The smallest positive integer p such that xp ∈ Γ (n) is n. From now on we
will assume that n is even. The element xn/2 then induces a permutation of order 2 on the set of traces on Ti of one
given type. After (1,0)-Dehn filling, one may close the corresponding surfaces by gluing them by pairs by an annulus
in the interior of the solid torus Ti with boundary the two corresponding traces associated by the order 2 permutation.
The cut of the filling by a meridian disk is represented in Fig. 1. In any case the hyperplanes in W yield immersed
quasi-convex surfaces in V (n) whose principle curvatures are close to zero when n is big. These surfaces cut V (n)

in compact contractible sets. The set of hyperplanes W thus induces a decomposition of V (n) as a finite union of
compact contractible sets. This yields a decomposition of the universal cover Ṽ (n) of V (n) into a union of compact
contractible sets. Any geodesic starting from a point in such a contractible will have to hit after some time (depending
only on n but not of the starting point) a hyperplane in W at an angle bigger than some uniform (in n) positive
constant. Assuming n2 sufficiently big (and hence the principle curvatures of the hyperplanes in W sufficiently close
to zero) this forces the geodesic to never cross back the hyperplane. Using this, it is now a standard task to prove
that W induces a wallspace structure (see Haglund and Paulin [7] for a definition and [4] for a related construction)
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Fig. 1. The cut of the filling by a meridian disk.

W (n) on Ṽ (n). The fundamental group Λ(n) = π1(V (n)) acts properly on Ṽ (n) and preserves the wallspace structure
W (n).

Remark 1. The walls in W (n) are in one-to-one correspondence with the equivalence classes of hyperplanes in W
under:

– the action of the (peripheral) subgroups of Γ (n) generated by the conjugates of xn on the hyperplanes of F of the
first type, and

– the action of the (peripheral) subgroups of Γ (n) generated by the conjugates of xn/2 on the other hyperplanes
of F .

Two walls in W (n) intersect if and only if they may be represented by two intersecting hyperplanes in W .

4. Cubulation

The cubulation of a space with walls embeds it in a CAT(0) cube complex (see [5] for a definition); it is an abstract
version of a construction due to Sageev [11]. In [10] Nica shows that any space with walls admits such a cubulation,
see [6] for an alternate construction. As a consequence he obtains that a proper group action on a space with walls
extends naturally to a proper group action on a CAT(0) cube complex. Using the Gromov-hyperbolicity of Λ(n) and
a general lemma of Hruska ans Wise [9] (see also [4, Lemma 3.3]) we obtain the following proposition:

Proposition 4.1. Let n � n1, n2. The group Λ(n) acts properly and cocompactly on a CAT(0) cube complex C(n).
Moreover, the hyperplanes of C(n) are in one-to-one correspondence with the walls of W (n), with equal stabilizers
in Λ(n).

The quotient Λ(n)\C(n) is a non-positively curved (npc) cube complex. In [8] Haglund and Wise introduce and
study a particular class of npc cube complex. A npc cube complex is special if its immersed hyperplanes avoid certain
pathologies: each hyperplane embeds, no hyperplane self-osculates and no two hyperplane interosculates. See [8] for
definitions.

The walls in W (n) project onto a finite number of (immersed) compact connected submanifolds in V (n). They
moreover induce a decomposition of Ṽ (n) as a locally finite union of compact connected contractible sets: the closure
of the connected components of the complementary region Ṽ (n) − ⋃

W∈W (n) W . Note that each such connected
component C is a manifold with corners with boundary a finite union of connected components of C ∩ W , open in
W ∈ W (n). We call such an intersection a face of C and say that the wall W supports this face. In analogy with the
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terminology of [8] we say that two walls in W (n) osculates if they are parallel and are note separated by another wall.
It follows from Proposition 4.1 that the cube complex Λ(n)\C(n) will be special if the walls in W (n) avoid certain
pathologies:

(i) Each wall in W (n) projects onto an embedded submanifold in V (n).
(ii) Two osculating walls in W (n) project on two different submanifold.

(iii) Two osculating walls in W (n) project on two non-intersecting submanifold.

Note that it follows from Remark 1 that this will be the case as soon as the projection of the hyperplanes H ∈ W into
Γ (n)\H3 already avoid the corresponding pathologies. In the next paragraph we prove that there exists some positive
integer n0 � n1, n2 such that for any even integer n � n0 the projection of the hyperplanes H ∈ W into Γ (n)\H3

avoid these pathologies. This implies that Λ(n)\C(n) is special. The following proposition then follows from [8,
Proposition 3.10 and Theorem 4.2]:

Proposition 4.2. For each even integer n � n0, the group Λ(n) virtually embeds in an abstract right-angled Coxeter
group.

5. Separation

Using finite unions of closures of connected components of X−⋃
H∈W H we may cover X by a family of compact

subsets D ⊂ X of uniformly bounded size such that two osculating walls must intersect some D. It then follows from
Remark 1 that the projection of the hyperplanes H ∈ W into Γ (n)\H3 will avoid the pathologies mentioned in the
preceding paragraph if for every γ ∈ Γ (m) (m = n/2) we have:

(i) For each hyperplane H ∈ W , if γ · H ∩ H 	= ∅ then γ ∈ Γ (m)H .
(ii) For each hyperplane H ∈ W intersecting some D, if γ · D ∩ H 	= ∅ then γ ∈ Γ (m)H .

(iii) For each pair of parallel hyperplanes H1,H2 ∈ W intersecting some D, then γ · H1 ∩ H2 = ∅.

For each hyperplane H ∈ W we let N(H) be the reunion of all the D that intersect H . To avoid the pathologies it is
thus sufficient to show that for m sufficiently large, the sets:

Bad
(
Γ (m),H

) := {
γ ∈ Γ (m): γ · N(H) ∩ N(H) 	= ∅} − Γ (m)H

and

Bad
(
Γ (m),H,H ′) := {

γ ∈ Γ (m): γ · H ∩ H ′ 	= ∅}

are both empty for every H,H ′ ∈ W disjoint and intersecting some D.
First note that there are only a finite number of hyperplanes H1, . . . ,Hk ∈ W (resp. of couples of hyperplanes

(H1,H
′
1), . . . , (Hk,H

′
k) in W ) such that each hyperplane of W (resp. each pair of disjoint hyperplanes intersecting

some D) is in the Γ -orbit of one of the Hi ’s (resp. (Hi,H
′
i )’s). It is thus sufficient to show that for every H,H ′ ∈ W

disjoint and intersecting some D, there exists some integer n0 such that for every n � n0, Bad(Γ (n),H) = ∅ and
Bad(Γ (n),H,H ′) = ∅. But as in the proofs of [4, Lemmas 5.2 and 5.3] this follows from the facts that both ΓH and
Γ ∩ StabSO(q)(H)StabSO(q)(H

′) are closed subsets of Γ for the topology generated by the basis consisting of cosets
of finite index subgroups containing some Γ (n) with n ∈ N�1. This in turn follows from the next lemma and the fact
that both StabSO(q)(H) and StabSO(q)(H)StabSO(q)(H

′) are rational algebraic subsets of SO(q). This is obvious in
the first case and is a consequence of the proof of [3, Proposition 10] in the last case.

Lemma 5.1. Let V be a rational algebraic subset of GL(4,R). Let γ ∈ Γ such that γ ∈ V Γ (n) for every n � 1 then
γ ∈ V .

Proof. Assume by contradiction that γ /∈ Γ ∩ V . Then there exists a polynomial P with Z-coefficients on the 4 × 4
matrices such that P(γ ) 	= 0. Choosing n sufficiently big so that P(γ ) 	= 0 (mod n) we conclude that γ /∈ V Γ (n). �
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6. Conclusion

Let r :M → S3 be a finite cover, branched over the figure eight knot K with all branching indices equal to a
common even integer n � n0 and let W → Y be the associated unbranched cover obtained by removing an open
tubular neighborhood of K . Let Γ ′ ⊂ Γ be the finite index subgroup corresponding to this cover. Consider the regular
cover W(n) → W corresponding to the normal subgroup Γ ′(n) = Γ ′ ∩ Γ (n). It follows from [2, Lemma 2] that
the cover W(n) → W extends to a regular (unbranched) cover M(n) → M by performing (1,0)-Dehn filling on each
cusp. Note now that M(n) is also a finite regular cover of V (n). It follows from Proposition 4.2, that π1(V (n)) virtually
embeds in an abstract right-angled Coxeter group. Thus M satisfies Conjecture 0.1 and Agol’s theorem finally implies
that M has a finite index cover which fibers over the circle.
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