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Abstract

Many problems in the theory of sparse approximation require bounds on operator norms of a random submatrix drawn from a
fixed matrix. The purpose of this Note is to collect estimates for several different norms that are most important in the analysis of
�1 minimization algorithms. Several of these bounds have not appeared in detail. To cite this article: J.A. Tropp, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Normes de sous-matrices aléatoires et approximation creuse. De nombreux problèmes en théorie de l’approximation non
linéaire exigent des majorations la norme d’une matrice aléatoirement extraite d’une matrice donnée de plus grande dimension.
L’objectif de cette Note est de présenter des estimations de ces normes qui se révèlent être importantes pour l’étude des algorithmes
de minimisation de type �1. La plupart de ces bornes n’ont pas encore été publiées explicitement. Pour citer cet article : J.A. Tropp,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider matrices written with respect to the standard basis, and we focus on three specific norms. The norm
‖ · ‖ is the usual Hilbert space operator norm; the �1 to �2 operator norm ‖ · ‖1→2 computes the maximum �2 norm of
a column; and ‖ · ‖max returns the maximum absolute entry of a matrix. Throughout, {δj } is a sequence of independent
0–1 random variables with common mean δ. We write R for the square diagonal matrix whose j th diagonal entry
is δj ; the dimensions of R are determined by context. The symbol Ep indicates the Lp norm of a random variable,
i.e., EpX = (E|X|p)1/p .

The main theorem is a bound on the spectral norm of a random principal submatrix.

Theorem 1.1 (Random principal submatrices). Let A be an n × n Hermitian matrix, decomposed into diagonal and
off-diagonal parts: A = D + H . Fix p in [2,∞), and set q = max{p,2 logn}. Then
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Ep‖RAR‖ � C
[
qEp‖RHR‖max + √

δqEp‖HR‖1,2 + δ‖H‖] + Ep‖RDR‖.

From this moment bound, tail probabilities can be estimated by applying Markov’s inequality in the usual fashion.
A partial case of this theorem appears in [5]. The argument is based on [4] and classical ideas from [3]. We apply the
result to sparse approximation in Section 5.

2. Preliminaries

Let us begin with some background. First, we present a decoupling result for the spectral norm that refines a
classical proposition from harmonic analysis [1, Prop. 1.9]:

Proposition 2.1 (Decoupling). Let H be an Hermitian matrix with a zero diagonal. Then

Ep‖RHR‖ � 2Ep‖RHR′‖,
where the two random restrictions on the right-hand side are independent and identically distributed.

Proof. We establish the result for p = 1. Let H jk be the matrix with entry hjk in position (j, k) and zero elsewhere.
Let ηj be iid 0–1 random variables with mean 1/2. By Jensen’s inequality,

E‖RHR‖ = E

∥∥∥∥
∑
j<k

δj δk(H jk + H kj )

∥∥∥∥ � 2EηEδ

∥∥∥∥
∑
j<k

[
ηj (1 − ηk) + ηk(1 − ηj )

]
δj δk(H jk + H kj )

∥∥∥∥.

There is a 0–1 vector η� for which the expression exceeds its expectation over η. Let T = {j : η�
j = 1}.

E‖RHR‖ � 2E

∥∥∥∥
∑

j∈T , k∈T c

δj δk(H jk + H kj )

∥∥∥∥ = 2E

∥∥∥∥
∑

j∈T , k∈T c

δj δkH jk

∥∥∥∥ = 2E

∥∥∥∥
∑

j∈T , k∈T c

δj δ
′
kH jk

∥∥∥∥,

where {δ′
k} is an independent copy of the sequence {δj }. The first equality follows from a standard identity for block

counter-diagonal Hermitian matrices. Now, the norm of a submatrix does not exceed the norm of the matrix, so we
re-introduce the missing entries to complete the argument,

E‖RHR‖ � 2E

∥∥∥∥
∑
j �=k

δj δ
′
kH jk

∥∥∥∥ = 2E‖RHR′‖. �

We also need a novel re-coupling result. It is based on the same ideas, so we omit the proof.

Proposition 2.2 (Re-coupling). Let H be an Hermitian matrix with a zero diagonal. Then

Ep‖RHR′‖max � 4Ep‖RHR‖max.

Third, we bound the expected maximum of a random subset of nonnegative scalars. See [4, Lemma 5.1] for related
ideas.

Proposition 2.3 (Max of a random subset). Let a1, a2, . . . , an be nonnegative and K = �δ−1	. Then

E max δj aj � 2 max
|T |�K

1

K

∑
j∈T

aj � 2δ

1 − δ
max

|T |�δ−1

∑
j∈T

aj .

Proof. We may take {aj } nonincreasing. The bound follows from a calculation and the fact K � δ−1 − 1,

E max δj aj � E

K∑
j=1

δj aj + aK+1 � δ

K∑
j=1

aj + 1

K

K∑
j=1

aj � 2

K

K∑
j=1

aj . �
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3. Maximum column norm of a random submatrix

This section contains bounds on the maximum column norm of a matrix restricted to a random set of columns or a
random set of rows. The first result is an easy application of Proposition 2.3.

Theorem 3.1. Let B be an m × n matrix with columns b1, . . . ,bn. When p � 1,

Ep‖BR‖1→2 � 2δ

1 − δ
max

|T |�δ−1

[∑
j∈T

‖bj‖p

2

]1/p

.

The second result is for random row restrictions. A partial case appears in [5, Prop. 13].

Theorem 3.2. Let B be an m × n matrix. For p in [2,∞), set q = max{p,2 logn}. Then

Ep‖RB‖1→2 � 21.25√qEp‖RB‖max + √
δ‖B‖1→2.

The proof relies on a lemma that is established with Khintchine’s inequality:

Lemma 3.3. Let X be an m × n matrix. For r in [1,∞), choose q � max{r,2 logn}. Then

Er max
k=1,2,...,n

∣∣∣∣∣
m∑

j=1

εj |xjk|2
∣∣∣∣∣ � 20.25√q‖X‖max‖X‖1→2,

where {εj } is a sequence of independent Rademacher variables.

Proof. First, we replace the maximum with the �q norm. Apply the inequalities of Jensen and Khintchine. Bound the
sum over k by a maximum. Finally, apply Hölder’s inequality:

Er max
k

∣∣∣∣
∑
j

εj |xjk|2
∣∣∣∣ �

[
E

(∑
k

∣∣∣∣
∑
j

εj |xjk|2
∣∣∣∣
q)r/q]1/r

�
[∑

k

E

∣∣∣∣
∑
j

εj |xjk|2
∣∣∣∣
q]1/q

� Cq

[∑
k

(
E

∣∣∣∣
∑
j

εj |xjk|2
∣∣∣∣
2)q/2]1/q

� Cqn1/q

[
max

k

∑
j

|xjk|4
]1/2

� Cqe0.5 max
j,k

|xjk|max
k

[∑
j

|xjk|2
]1/2

.

Finally, recall that the constant Cq from Khintchine’s inequality is bounded by 20.25e−0.5√q . �
Proof. (Theorem 3.2) Define E = Ep‖RB‖1→2. Writing r = p/2, we elaborate the quantity E. Then we center the
random variables and apply the usual symmetrization [3, Lem. 6.3]:

E2 =
[
E

(
max

k

∑
j

δj |bjk|2
)r]1/r

� 2

[
EδEε

∣∣∣∣max
k

∑
j

εj δj |bjk|2
∣∣∣∣
r]1/r

+ δ‖B‖2
1→2.

Invoke Lemma 3.3 with X = RB . Afterward, Cauchy–Schwarz results in

E2 � 21.25√q
[
E‖RB‖r

max‖RB‖r
1→2

]1/r + δ‖B‖2
1→2 � 21.25√qEp‖RB‖maxE + δ‖B‖2

1→2.

Theorem 3.2 can be sharpened slightly using Rosenthal’s inequality. We prefer the preceding argument because it
anticipates the proof of the next theorem. Solutions to the relation E2 � αE + β obey E � α + √

β . This point
completes the proof. �
4. Spectral norms of random submatrices

The proof of Theorem 1.1 uses a result of Rudelson–Vershynin [4] to bound the spectral norm of a random col-
umn submatrix. Its proof is analogous with that of Theorem 3.2 but relies on a sharp noncommutative Khintchine
inequality [2]. The explicit constant was obtained in [5, Prop. 12].
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Theorem 4.1 (Rudelson–Vershynin). Let B be an m × n matrix with rank r . For p in [2,∞), set q = max{p,2 log r}.
Then

Ep‖BR‖ � 3
√

q Ep‖BR‖1→2 + √
δ‖B‖.

Proof of Theorem 1.1. Remove the diagonal of the matrix A, then decouple the projectors with Proposition 2.1:
Ep‖RAR‖ � 2Ep‖RHR′‖ + Ep‖RDR‖.

To estimate the first term, we apply the Rudelson–Vershynin theorem twice, once for each projector:

Ep‖RHR′‖ � 3
√

q Ep‖RHR′‖1→2 + √
δ Ep‖RH‖

� 3
√

q Ep‖RHR′‖1→2 + 3
√

δq Ep‖HR‖1→2 + δEp‖H‖.
The maximum column norm bound, Theorem 3.2, yields

Ep‖RHR′‖ � 3
√

q
[
21.25√q Ep‖RHR′‖max + √

δEp‖HR′‖1→2
] + 3

√
δq Ep‖HR‖1→2 + δEp‖H‖.

Since R′ and R are identically distributed, we combine the second and third terms to reach
Ep‖RAR‖ � 15qEp‖RHR′‖max + 12

√
δq Ep‖HR‖1→2 + 2δEp‖H‖ + Ep‖RDR‖. (1)

Finally, apply the re-coupling result, Proposition 2.2, to the first term. �
5. Random subdictionaries

A dictionary is an m × n matrix � whose columns ϕ1,ϕ2, . . . ,ϕn have unit �2 norm. Define the hollow Gram
matrix H = �∗� − I, and note that ‖H‖1→2 < ‖�∗�‖1→2 = maxk ‖�∗ϕk‖2 � ‖�‖. A random subdictionary with
expected cardinality δn is a column submatrix �T where T = {j : δj = 1}.

The most important statistic associated with a dictionary is the coherence μ = maxj �=k |〈ϕj , ϕk〉|. For a set T of
columns, the local 2-cumulative coherence is the quantity:

μ2(T ) = maxk /∈T

[∑
j∈T

∣∣〈ϕj ,ϕk〉
∣∣2

]1/2

.

Theorem 3.2 allows us to estimate the local 2-cumulative coherence of a random subdictionary.

Corollary 5.1. Let T = {j : δj = 1}. When p = 2 logn, we have Epμ2(T ) � 4μ
√

logn + √
δ‖�‖.

Proof. Observe that the local coherence μ2(T ) = ‖RH (I − R)‖1→2 � ‖RH‖1→2. Invoke Theorem 3.2 along with
the facts ‖RH‖max � μ and ‖H‖1→2 < ‖�‖. �

We can use Theorem 1.1 to study the conditioning of a random subdictionary via the quantity ‖RHR‖.

Corollary 5.2. For p = 2 logn, we have the bound

Ep‖RHR‖ � C
[
μ logn +

√
δ‖�‖2 logn

]
. (2)

Proof. Apply Theorem 1.1 with A = H , then introduce ‖RH‖1→2 < ‖�‖ and ‖RHR‖max � μ. �
A subject for further investigation is to use Proposition 2.3 to sharpen the first term of the bracket in (2) when p is

small. An elegant answer has remained elusive.
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