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Abstract

We announce that a null-homotopic holomorphic mapping from a finite dimensional reduced Stein space into SLn(C) can be
factored into a finite product of unipotent matrices with holomorphic entries. To cite this article: B. Ivarsson, F. Kutzschebauch,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une solution du problème de Vaserstein tel qu’énoncé par Gromov. Nous annonçons qu’une application holomorphe homo-
topiquement triviale d’un espace de Stein réduit de dimension finie vers SLn(C) peut être factorisée par un produit fini de matrices
unipotentes à coefficients holomorphes. Pour citer cet article : B. Ivarsson, F. Kutzschebauch, C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous présentons une solution affirmative complète au problème de Vaserstein tel que posé par
Gromov

Problème de Vaserstein. ([14, sec 3.5.G].) Est-ce que toute application holomorphe C
n → SLm(C) se décompose en

un produit fini d’applications holomorphes qui envoient C
n vers des sous-groupes unipotents de SLm(C) ?

Nous énonçons ainsi

Théorème 0.1. Soit X un espace réduit de Stein de dimension finie et f :X → SLm(C) une application holomorphe
homotopiquement triviale. Alors il existe un entier naturel K et des applications holomorphes G1, . . . ,GK :X →
C

m(m−1)/2 tels que
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f (x) =
(

1 0
G1(x) 1

)(
1 G2(x)

0 1

)
. . .

(
1 GK(x)

0 1

)

est un produit de matrices unipotentes triangulaires supérieures et inférieures.

1. Introduction

It is standard material in a Linear Algebra course that the group SLm(C) is generated by elementary matrices
Em +αeij , i �= j , i.e., matrices with 1’s on the diagonal and all entries outside the diagonal are zero, except one entry.
Equivalently every matrix A ∈ SLm(C) can be written as a finite product of upper and lower diagonal unipotent matri-
ces (in interchanging order). The same question for matrices in SLm(R) where R is a commutative ring instead of the
field C is much more delicate. For example if R is the ring of complex valued functions (continuous, smooth, alge-
braic or holomorphic) from a space X the problem amounts to find for a given map f :X → SLm(C) a factorization
as a product of upper and lower diagonal unipotent matrices

f (x) =
(

1 0
G1(x) 1

)(
1 G2(x)

0 1

)
. . .

(
1 GN(x)

0 1

)

where the Gi are maps Gi : X → C
m(m−1)/2.

Since any product of (upper and lower diagonal) unipotent matrices is homotopic to a constant map (multiplying
each entry outside the diagonals by t ∈ [0,1] we get a homotopy to the identity matrix), one has to assume that
the given map f :X → SLm(C) is homotopic to a constant map or as we will say null-homotopic. In particular this
assumption holds if the space X is contractible.

This very general problem has been studied in the case of polynomials of n variables. For n = 1, i.e., f :X →
SLm(C) a polynomial map (the ring R equals C[z]) it is an easy consequence of the fact that C[z] is an Euclidean ring
that such f factors through a product of upper and lower diagonal unipotent matrices. For m = n = 2 the following
counterexample was found by Cohn [1]: the matrix(

1 − z1z2 z2
1

−z2
2 1 + z1z2

)
∈ SL2

(
C[z1, z2]

)

does not decompose as a finite product of unipotent matrices.
For m � 3 (and any n) it is a deep result of Suslin [17] that any matrix in SLm(C[Cn]) decomposes as a finite

product of unipotent (and equivalently elementary) matrices. More results in the algebraic setting can be found in [17]
and [10]. For a connection to the Jacobian problem on C

2 see [20].
In the case of continuous complex valued functions on a topological space X the problem was studied and partially

solved by Thurston and Vaserstein [18] and then finally solved by Vaserstein [19, Theorem 4].
It is natural to consider the problem for rings of holomorphic functions on Stein spaces, in particular on C

n.
Explicitly this problem was posed by Gromov in his groundbreaking paper [14] where he extends the classical Oka–
Grauert theorem from bundles with homogeneous fibers to fibrations with elliptic fibers, e.g., fibrations admitting a
dominating spray. In spite of the above mentioned result of Vaserstein he calls it the

Vaserstein problem. (See [14, sec 3.5.G].) Does every holomorphic map C
n → SLm(C) decompose into a finite

product of holomorphic maps sending C
n into unipotent subgroups in SLm(C)?

In this Note we announce a complete positive solution of Gromov’s Vaserstein problem, namely

Theorem 1. Let X be a finite dimensional reduced Stein space and f :X → SLm(C) be a holomorphic mapping that
is null-homotopic. Then there exist a natural number K and holomorphic mappings G1, . . . ,GK :X → C

m(m−1)/2

such that

f (x) =
(

1 0
G1(x) 1

)(
1 G2(x)

0 1

)
. . .

(
1 GN(x)

0 1

)

is a product of upper and lower diagonal unipotent matrices.
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We have the following corollary which in particular solves Gromov’s Vaserstein problem:

Corollary 1.1. Let X be a finite dimensional reduced Stein space that is topologically contractible and f :X →
SLm(C) be a holomorphic mapping. Then there exist a natural number K and holomorphic mappings G1, . . . ,

GK :X → C
m(m−1)/2 such that

f (x) =
(

1 0
G1(x) 1

)(
1 G2(x)

0 1

)
. . .

(
1 GK(x)

0 1

)

is a product of upper and lower diagonal unipotent matrices.

By the definition of the Whitehead K1-group of a ring, see [15, page 61], this implies:

Corollary 1.2. Let X be a finite dimensional reduced Stein space that is topologically contractible and denote by O(X)

the ring of holomorphic functions on X. Then SK1(O(X)) is trivial and the determinant induces an isomorphism
det :K1(O(X)) → O(X)�.

The method of proof is an application of the Oka–Grauert–Gromov-principle to certain stratified fibrations. The
existence of a topological section for these fibrations we deduce from Vaserstein’s result.

We need the principle in it’s strongest form suggested by Gromov, completely proven by Forstnerič and Prezelj [4],
see also Forstnerič [3, Theorem 8.3]. After the Gromov–Eliashberg embedding theorem for Stein manifolds (see
[2,16]) this is to our knowledge the second time this holomorphic h-principle has an application which goes beyond
the classical results of Grauert, Forster and Rammspott [13,12,11,5,9,8,7,6].

2. Sketch of the proof for SL2(C)

All complex spaces considered in this paper will be assumed reduced and we will not repeat this every time. We
call a complex space X finite dimensional if its smooth part X \ Xsing has finite dimension. Note that this does not
imply that they have finite embedding dimension.

Define ΨK : CK → SL2(C) as

ΨK(z1, . . . , zK) =
(

1 0
z1 1

)(
1 z2
0 1

)
. . .

(
1 zK

0 1

)
.

We want to show the existence of a holomorphic map G = (G1, . . . ,GK) :X → C
K such that

C
K

ΨK

X
f

G

SL2(C)

is commutative. The result by Vaserstein shows the existence of a continuous map such that the diagram above is
commutative.

We prove the result applying the Oka–Grauert–Gromov principle for sections of holomorphic submersions over X

coming from the diagram

C
K

π2◦ΨK

X
π2◦f

F

C
2 \ {0}

where we define the projection π2 : SL2(C) → C
2 \ {0} to be the projection of a matrix in SL2(C) to its second row.

However, the map ΦK = π2 ◦ ΨK : CK → C
2 \ {0} is not submersive everywhere. We have the following result

which describes the situation:
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Lemma 2.1. The mapping ΦK = π2 ◦ ΨK : CK → C
2 \ {0} is a holomorphic submersion exactly at points C

K \ SK ,
where for K � 2,

SK = {
(z1, . . . , zK) ∈ C

K : z1 = · · · = zK−1 = 0
}

and the submersion ΦK = π2 ◦ ΨK : CK \ SK → C
2 \ {0} is surjective when K � 3.

The following is crucial for the proof:

Lemma 2.2. The holomorphic submersions ΦK : CK \ SK → C
2 \ {0}, for K � 3, admit stratified sprays (for a defi-

nition of sprays and stratified sprays see [14] and [4]).

Proof. Write ΦK(z1, . . . , zK) = (PK(z1, . . . , zK),QK(z1, . . . , zK)) and note that

PK(z1, . . . , zK) = PK−1(z1, . . . , zK−1)

and

QK(z1, . . . , zK) = QK−1(z1, . . . , zK−1) + zKPK−1(z1, . . . , zK−1)

when K is even and similarly PK = zKPK−1 + QK−1 and QK = QK−1 when K is odd. We concentrate on the case
when K is even. The odd case is handled in the same way. Let (a, b) ∈ C

2 \ {0} and study the fiber PK = a, QK = b.
When a �= 0 the fiber is a graph in C

K−1 × CzK
over PK−1 = a in C

K−1 since zK = (b − QK−1)/a. When a = 0
the fiber is Φ−1

K−1(0, b) × CzK
and, since b �= 0 in this case, Φ−1

K−1(0, b) is a graph in C
K−2 × CzK−1 over QK−2 = b

in C
K−2. So in both cases the fibers described by two polynomial equations are reduced to graphs over a surface

described by a single polynomial equation. A standard way of producing sprays is to use flows of globally integrable
tangential holomorphic vector fields spanning the tangent space at each point of the fiber and this is the method we
will use. We will use C

2 \ {0} ⊃ {(a, b) ∈ C
2 \ {0};a = 0} ⊃ ∅ to stratify C

2 \ {0} and only describe the construction
of the spray in the stratum {(a, b) ∈ C

2 \ {0};a �= 0}. The stratum {(a, b) ∈ C
2 \ {0};a = 0} is handled similarly. We

need to find globally integrable tangential holomorphic vector fields that span the tangent space of PK−1 = a �= 0 at
each point of the surface. We point out that non-smooth points of PK−1 = a are contained in SK if they exist. We
claim that the vector fields

Vij = ∂PK−1

∂zi

∂

∂zj

− ∂PK−1

∂zj

∂

∂zi

, 1 � i < j � K

have the properties needed. They obviously are tangential and one easily check that they span the tangent space of
the fiber at each point. In order to realize that the vector fields are globally integrable note that PK−1 is a polynomial
that is no more than linear in each variable separably. Also since ∂PK−1/∂zi is independent of zi and ∂PK−1/∂zj is
independent of zj the flow of Vij is the solution of a system of two independent differential equations that are both
globally integrable. This concludes the sketch of the proof of the lemma. �

Lemma 2.2 allows us to prove the following proposition:

Proposition 2.3. Let X be a finite dimensional reduced Stein space and f :X → SL2(C) be a null-homotopic holo-
morphic map. Assume that there exists a natural number K and a continuous map F :X → C

K \ SK such that

C
K \ SK

π2◦ΨK

X
π2◦f

F

C
2 \ {0}

is commutative. Then there exists a holomorphic map G :X → CK \ SK such that the diagram is commutative.

Proof. Put Y = C
K \ SK and p = π2 ◦ f . Define the pull-back of (Y,ΦK,C

2 \ {0}) via p :X → C
2 \ {0} as

(p�Y,p�ΦK,X) where

p�Y = {
(x,Z) ∈ X × Y ;p(x) = ΦK(Z)

}
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and p�ΦK(x,Z) = x. Using that ΦK is a holomorphic submersion we see that p�ΦK is a holomorphic submersion.
The continuous mapping F defines a continuous section

p�F(x) = (
x,F (x)

)
of (p�Y,p�ΦK,X). From Lemma 2.2 and the finite dimensionality of X it follows that (p�Y,p�ΦK,X) admits
stratified sprays. Now the result follows by the Oka–Grauert–Gromov-principle (see [14] and [4]). �
Proof. (Proof of Theorem 1 for SL2(C).) By a result of Vaserstein [19, Theorem 4] we have a continuous map
F :X → C

K ′
for some natural number K ′ such that f (x) = ΨK ′(F (x)). Using Lemma 2.1 we see that F =

(F1, . . . ,FK ′ ,1,0,−1) gives a map from X into C
K ′+3 \ SK ′+3 and putting K = K ′ + 3 we have f (x) = ΨK(F(x)).

It follows that ΨK(F(x))f (x)−1 = E2. Using Proposition 2.3 we know that there is holomorphic map G such that

ΦK

(
F(x)

) = π2
(
f (x)

) = ΦK

(
G(x)

)
that is the last rows of the matrices ΨK(F(x)) and ΨK(G(x)) are equal.

Therefore

ΨK

(
G(x)

)
f (x)−1 =

(
a(x) b(x)

0 1

)

where a and b are holomorphic and moreover a ≡ 1 since the left hand side is in SL2(C). Thus

f (x) = ΨK

(
G(x)

)(
1 −b(x)

0 1

)

which solves the problem. �
The proof in the general case is by induction on the size of the matrices. The difficult part is to show Lemma 2.2.

We are able to reduce strata-wise the m polynomial equations which define the fibers of ΦK to one single polynomial
equation. The special form of the occurring polynomials allows us to find a spray by constructing finitely many
globally integrable holomorphic vector fields which span the tangent space of the fibers at each point. The details will
appear elsewhere.
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