Partial Differential Equations

Stability estimates on general scalar balance laws

Rinaldo M. Colombo, Magali Mercier ${ }^{1}$, Massimiliano D. Rosini
Department of Mathematics, Brescia University, Via Branze 38, 25133 Brescia, Italy
Received 14 July 2008; accepted 29 October 2008
Available online 26 November 2008
Presented by Jean-Michel Bony

Abstract

Consider the general scalar balance law in N space dimensions $\partial_{t} u+\operatorname{Div} f(t, x, u)=F(t, x, u)$. Under suitable assumptions on f and F, we provide bounds on the total variation of the solution. Based on this first result, we establish estimates on the dependence of the solutions from f and F. In the more particular cases considered in the literature, the present estimate reduces to the known ones. To cite this article: R.M. Colombo et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimation de la variation totale et stabilité pour des lois de conservations scalaires généralisées. Nous considérons ici une loi de conservation généralisée en dimension $N: \partial_{t} u+\operatorname{Div} f(t, x, u)=F(t, x, u)$. Sous des hypothèses adaptées pour f et F, nous obtenons une borne de la variation totale de la solution. À partir de ce résultat, il est alors possible de donner une estimation de la dépendance des solutions au flot f et au terme source F. Dans les cas particuliers déjà étudiés, notre résultat se réduit à ceux déjà connus. Pour citer cet article : R.M. Colombo et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $f \in \mathbf{C}^{2}\left(\overline{\mathbb{R}}_{+} \times \mathbb{R}^{N} \times \mathbb{R} ; \mathbb{R}^{N}\right), F \in \mathbf{C}^{1}\left(\overline{\mathbb{R}}_{+} \times \mathbb{R}^{N} \times \mathbb{R} ; \mathbb{R}\right)$ and $u_{o} \in \mathbf{L}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$. Then, the classical result [8, Theorem 5] ensures the well posedness of the Cauchy problem

$$
\begin{cases}\partial_{t} u+\operatorname{Div} f(t, x, u)=F(t, x, u), & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{N}, \tag{1}\\ u(0, x)=u_{o}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

In the present Note, under suitable further assumptions on the flow f and on the source F, we state that the solution $u(t)$ to (1) is in $\mathbf{B V}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ and provide bounds on its total variation.

This result allows us to obtain estimates on the dependence of the solution on f, F and u_{o}. Similar results were obtained in [2, Theorem 2.1] in the case of systems of conservation laws in 1 space dimension, with $f=f(u)$ and

[^0]$F=0$. In the case of a scalar equation with $f=f(u), F=0$ and with N space dimensions, the same problem was addressed by Bouchut and Perthame [3] who proved, among other results, the following estimate (that was already known, see [6,9]):
\[

$$
\begin{equation*}
\|u(t)-v(t)\|_{\mathbf{L}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)} \leqslant\left\|u_{o}-v_{o}\right\|_{\mathbf{L}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)}+C \operatorname{TV}\left(u_{o}\right) \mathbf{L i p}(f-g) t . \tag{2}
\end{equation*}
$$

\]

The estimate proved in Theorem 2.4 below reduces to (2) as soon as $f=f(u)$ and $F=0$. In this context, we recall that [2, Theorem 2.6] provides a sharp estimate in the scalar 1D case with $f=f(u)$ and $F=0$.

The case of x-dependent flows was considered in [4] and [7], where it is assumed that $f(x, u)=k(x) v(u)$. However, in both papers, the resulting estimate holds under the further assumption that the solutions have uniformly bounded total variation. Here, the bound on $\operatorname{TV}(u(t))$ is not assumed, but proved.

All proofs, together with an application to a radiating gas model, are deferred to [5].

2. Main results

Introduce the notation: $\overline{\mathbb{R}}_{+}=\left[0,+\infty\left[, \mathbb{R}_{+}=\right] 0,+\infty\left[, N\right.\right.$ is a positive integer and $\Omega=\overline{\mathbb{R}}_{+} \times \mathbb{R}^{N} \times \mathbb{R}$. For a vector valued function $f=f(t, x, u)$ with $u=u(t, x)$, Div f stands for the total divergence while div f, respectively ∇f, denotes the partial divergence, respectively gradient, with respect to the space variables. ∂_{u} and ∂_{t} are the usual partial derivatives. Thus, $\operatorname{Div} f=\operatorname{div} f+\partial_{u} f \cdot \nabla u$.

Recall the definition of weak entropy solution to (1), see [8, Definition 1]:
Definition 2.1. A bounded measurable function $u: \mathbb{R}_{+} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a weak entropy solution to (1) if:

1. for any constant $k \in \mathbb{R}$ and any test function $\varphi \in \mathbf{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{N} ; \overline{\mathbb{R}}_{+}\right)$

$$
\int_{\mathbb{R}_{+}} \int_{\mathbb{R}^{N}}\left[(u-k) \partial_{t} \varphi+[f(t, x, u)-f(t, x, k)] \nabla \varphi+[F(t, x, u)-\operatorname{div} f(t, x, k)] \varphi\right] \operatorname{sign}(u-k) \mathrm{d} x \mathrm{~d} t \geqslant 0
$$

2. there exists a set \mathcal{E} of zero measure in $\overline{\mathbb{R}}_{+}$such that for $t \in \overline{\mathbb{R}}_{+} \backslash \mathcal{E}$ the function $u(t, x)$ is defined almost everywhere in \mathbb{R}^{N} and $\lim _{t \in \overline{\mathbb{R}}_{+} \backslash \mathcal{E}, t \rightarrow 0} \int_{\|x\| \leqslant r}\left|u(t, x)-u_{o}(x)\right| \mathrm{d} x=0$ for any $r>0$.

We refer to [1] as general references for the theory of $\mathbf{B V}$ functions. In particular, recall the following basic definition, see [1, Definition 3.4 and Theorem 3.6]:

$$
\begin{aligned}
& \operatorname{TV}(u)=\sup \left\{\int_{\mathbb{R}^{N}} u \operatorname{div} \psi \mathrm{~d} x: \psi \in \mathbf{C}_{\mathrm{c}}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right) \text { and }\|\psi\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)} \leqslant 1\right\}, \\
& \mathbf{B V}\left(\mathbb{R}^{N} ; \mathbb{R}\right)=\left\{u \in \mathbf{L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right): \operatorname{TV}(u)<+\infty\right\} .
\end{aligned}
$$

The following sets of assumptions will be of use below:
(H1): $\left\{\begin{array}{l}f \in \mathbf{C}^{2}\left(\Omega ; \mathbb{R}^{N}\right), \quad F \in \mathbf{C}^{1}(\Omega ; \mathbb{R}), \\ \partial_{u} f \in \mathbf{L}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), \quad \partial_{u}(F-\operatorname{div} f\end{array}\right.$
(H2): $\left\{\begin{array}{l}f \in \mathbf{C}^{2}\left(\Omega ; \mathbb{R}^{N}\right), \quad F \in \mathbf{C}^{1}(\Omega ; \mathbb{R}), \\ \partial_{t} \partial_{u} f \in \mathbf{L}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), \\ \nabla \partial_{t} \operatorname{div} f \in \mathbf{L}^{\infty}(\Omega ; \mathbb{R}), \quad \partial_{t} F \in \mathbf{L}^{\infty}(\Omega ; \mathbb{R}), \\ \nabla \partial_{u}\left(\Omega ; \mathbb{R}^{N \times N}\right), \quad \int_{\mathbb{R}_{+}} \int_{\mathbb{R}^{N}}\|\nabla(F-\operatorname{div} f)(t, x, \cdot)\|_{\mathbf{L}^{\infty}\left(\mathbb{R} ; \mathbb{R}^{N}\right.}\end{array}\right.$
(H3)

$$
\left\{\begin{array}{l}
f \in \mathbf{C}^{1}\left(\Omega ; \mathbb{R}^{N}\right), \quad F \in \mathbf{C}^{0}(\Omega ; \mathbb{R}), \quad \partial_{u} F \in \mathbf{L}^{\infty}(\Omega ; \mathbb{R}), \\
\partial_{u} f \in \mathbf{L}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), \quad \int_{\mathbb{R}_{+}} \int_{\mathbb{R}^{N}}\|(F-\operatorname{div} f)(t, x, \cdot)\|_{\mathbf{L}^{\infty}(\mathbb{R} ; \mathbb{R})} \mathrm{d} x \mathrm{~d} t<+\infty .
\end{array}\right.
$$

Assumption (H1) is sufficient for the classical results by Kružkov [8, Theorem 1 and Theorem 5] to hold.
Theorem 2.2 (Kružkov). Let (H1) hold. For any $u_{o} \in \mathbf{L}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$, there exists a unique right continuous weak entropy solution u to (1) in $\mathbf{L}^{\infty}\left(\overline{\mathbb{R}}_{+} ; \mathbf{L}_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)\right)$. Moreover, if a sequence $u_{o}^{n} \in \mathbf{L}^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ converges to u_{o} in $\mathbf{L}_{\mathrm{loc}}^{1}$, then for all $t>0$ the corresponding solutions $u^{n}(t)$ converge to $u(t)$ in $\mathbf{L}_{\mathrm{loc}}^{1}$.

The next result contains the estimate on the total variation, a key point in the stability proof below:
Theorem 2.3. Assume that $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$ hold. Let $u_{o} \in \mathbf{B V}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$. Then, the weak entropy solution u of (1) satisfies $u(t) \in \mathbf{B V}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ for all $t>0$. Moreover, let

$$
\begin{equation*}
\kappa_{o}=N W_{N}\left((2 N+1)\left\|\nabla \partial_{u} f\right\|_{\mathbf{L}^{\infty}}+\left\|\partial_{u} F\right\|_{\mathbf{L}^{\infty}}\right) \quad \text { and } \quad W_{N}=\int_{0}^{\pi / 2}(\cos \theta)^{N} \mathrm{~d} \theta . \tag{3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\operatorname{TV}(u(T)) \leqslant \operatorname{TV}\left(u_{o}\right) \mathrm{e}^{\kappa_{o} T}+N W_{N} \int_{0}^{T} \mathrm{e}^{\kappa_{o}(T-t)} \int_{\mathbb{R}^{N}}\|\nabla(F-\operatorname{div} f)(t, x, \cdot)\|_{\mathbf{L}^{\infty}} \mathrm{d} x \mathrm{~d} t . \tag{4}
\end{equation*}
$$

This estimate is optimal in the following senses:
(i) If f is independent from x and $F=0$, then $\kappa_{o}=0$ and the integrand in the right hand side above vanishes. Hence, (4) reduces to the well known optimal bound $\mathrm{TV}(u(t)) \leqslant \mathrm{TV}\left(u_{o}\right)$.
(ii) In the 1D case, if f and F are both independent from t and u, then $\kappa_{o}=0$ and (1) reduces to the ordinary differential equation $\partial_{t} u=F-\operatorname{div} f$. In this case, (4) becomes

$$
\operatorname{TV}(u(t)) \leqslant \operatorname{TV}\left(u_{o}\right)+t \mathrm{TV}(F-\operatorname{div} f)
$$

(iii) If $f=0$ and $F=F(t)$ then, trivially, $\mathrm{TV}(u(t))=\mathrm{TV}\left(u_{o}\right)$ and (4) is optimal.

Let now $(f, F),(g, G)$ verify (H1) and $u_{o}, v_{o} \in \mathbf{L}_{\text {loc }}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$. We want to prove estimates for $u-v$ in terms of $f-g, F-G$ and $u_{o}-v_{o}$, u being the entropy solution of (1) and v being the entropy solution of

$$
\begin{cases}\partial_{t} v+\operatorname{Div} g(t, x, v)=G(t, x, v), & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{N}, \\ v(0, x)=v_{o}(x), & x \in \mathbb{R}^{N} .\end{cases}
$$

Similar estimates were derived in [3] when f and g depend only on u. Here, we add the (t, x)-dependence.
Theorem 2.4. Let $(f, F),(g, G)$ verify (H1), (f, F) verify (H2) and $(f-g, F-G)$ verify (H3). Let $u_{o}, v_{o} \in$ $\mathbf{B V}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$. We denote κ_{o} and W_{N} as in $(3), \kappa=2 N\left\|\nabla \partial_{u} f\right\|_{\mathbf{L}^{\infty}\left(\Omega ; \mathbb{R}^{N \times N}\right)}+\left\|\partial_{u} F\right\|_{\mathbf{L}^{\infty}(\Omega ; \mathbb{R})}+\left\|\partial_{u}(F-G)\right\|_{\mathbf{L}^{\infty}(\Omega ; \mathbb{R})}$ and $M=\left\|\partial_{u} g\right\|_{\mathbf{L}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)}$. Then, for any $T, R>0, x_{o} \in \mathbb{R}^{N}$,

$$
\begin{align*}
& \int_{\left\|x-x_{o}\right\| \leqslant R}|u(T, x)-v(T, x)| \mathrm{d} x \leqslant \mathrm{e}^{\kappa T} \int_{\left\|x-x_{o}\right\| \leqslant R+M T}\left|u_{o}(x)-v_{o}(x)\right| \mathrm{d} x+\frac{\mathrm{e}^{\kappa_{o} T}-\mathrm{e}^{\kappa T}}{\kappa_{o}-\kappa} \mathrm{TV}\left(u_{o}\right)\left\|\partial_{u}(f-g)\right\|_{\mathbf{L}^{\infty}} \\
& +N W_{N} \int_{0}^{T} \frac{\mathrm{e}^{\kappa_{o}(T-t)}-\mathrm{e}^{\kappa(T-t)}}{\kappa_{o}-\kappa} \int_{\mathbb{R}^{N}}\|\nabla(F-\operatorname{div} f)(t, x, \cdot)\|_{\mathbf{L}^{\infty}} \mathrm{d} x \mathrm{~d} t\left\|_{u}(f-g)\right\|_{\mathbf{L}^{\infty}} \\
& +\int_{0}^{T} \mathrm{e}^{\kappa(T-t)} \int_{\left\|x-x_{o}\right\| \leqslant R+M(T-t)}\|((F-G)-\operatorname{div}(f-g))(t, x, \cdot)\|_{\mathbf{L}^{\infty}} \mathrm{d} x \mathrm{~d} t . \tag{5}
\end{align*}
$$

Formally, the above inequality is undefined for $\kappa=\kappa_{o}$. However, as shown in [5], when $\left(\kappa-\kappa_{o}\right) \rightarrow 0$ the right hand side above has a finite limit which bounds the distance between solutions. Note that (4), as well as (5), does not depend on all second derivatives, hence the regularity requirements on f can be relaxed, see [5] for details. Besides, (5) is optimal in the cases considered before. Assume $u_{o}, v_{o} \in \mathbf{L}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$.
(i) In the standard case of a conservation law, i.e. when $F=G=0$ and f, g are independent of x, we have $\kappa_{o}=$ $\kappa=0$ and (5) becomes, see [2, Theorem 2.1],

$$
\|u(T)-v(T)\|_{\mathbf{L}^{1}} \leqslant\left\|u_{o}-v_{o}\right\|_{\mathbf{L}^{1}}+T \operatorname{TV}\left(u_{o}\right)\left\|\partial_{u}(f-g)\right\|_{\mathbf{L}^{\infty}}
$$

(ii) If $\partial_{u} f=\partial_{u} g=0$ and $\partial_{u} F=\partial_{u} G=0$, then $\kappa_{o}=\kappa=0$ and (5) now reads

$$
\|u(T)-v(T)\|_{\mathbf{L}^{1}} \leqslant\left\|u_{o}-v_{o}\right\|_{\mathbf{L}^{1}}+\int_{0}^{T}\|((F-G)-\operatorname{div}(f-g))(t)\|_{\mathbf{L}^{1}} \mathrm{~d} t .
$$

(iii) If (f, F) and (g, G) are dependent only on x, then (5) reduces to

$$
\|u(T)-v(T)\|_{\mathbf{L}^{1}} \leqslant\left\|u_{o}-v_{o}\right\|_{\mathbf{L}^{1}}+T\|(F-G)-\operatorname{div}(f-g)\|_{\mathbf{L}^{1}} .
$$

References

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
[2] S. Bianchini, R.M. Colombo, On the stability of the standard Riemann semigroup, Proc. Amer. Math. Soc. 130 (7) (2002) 1961-1973 (electronic).
[3] F. Bouchut, B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc. 350 (7) (1998) $2847-2870$.
[4] G.-Q. Chen, K.H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Comm. Pure Appl. Anal. 4 (2) (2005) 241-266.
[5] R.M. Colombo, M. Mercier, M.D. Rosini, Stability and total variation estimates on general scalar balance laws, Comm. Math. Sci., submitted for publication.
[6] C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972) 33-41.
[7] K.H. Karlsen, N.H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dynam. Syst. 9 (5) (2003) 1081-1104.
[8] S.N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. 81 (123) (1970) 228-255.
[9] B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46 (173) (1986) 59-69.

[^0]: E-mail addresses: rinaldo.colombo@unibs.it (R.M. Colombo), mercier@math.univ-lyon1.fr (M. Mercier), massimilianorosini@gmail.com (M.D. Rosini).
 ${ }^{1}$ Permanent address: Université de Lyon, Université Lyon 1, École Centrale de Lyon, INSA de Lyon, CNRS UMR 5208, Institut Camille Jordan, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex.

