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Abstract

Let �u(·, t) be a strong solution of the Navier–Stokes equation on 3-dimensional torus T
3, and �ω(·, t) = ∇ × �u(·, t) be the vorticity.

In this Note we show that

∥∥ �ω(·, t)∥∥1 +
√

2

4ν

∥∥�u(·, t)∥∥2
2

is decreasing in t as long as the solution �u(·, t) exists, where ν > 0 is the viscosity constant and ‖ · ‖q denotes the Lq -norm. To cite
this article: Z. Qian, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une estimation de la vorticité de l’équation de Navier–Stokes. Supposons que �u(·, t) soit une solution de l’équation de
Navier–Stokes sur le torus T

3 de la dimension 3, et soit �ω(·, t) = ∇ × �u(·, t) la vorticité, nous démontrons dans cette Note que
l’application

∥∥ �ω(·, t)∥∥1 +
√

2

4ν

∥∥�u(·, t)∥∥2
2

est une fonction décroissante en t . Pour citer cet article : Z. Qian, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The main result

Consider the Navier–Stokes equation

∂

∂t
�u + (�u · ∇)�u = νΔ�u − ∇p, ∇ · �u = 0 (1)

on 3-dimensional torus T
3, where ν > 0 is the viscosity constant. For each t � 0, �u(·, t) is a vector field on T

3 and
p(·, t) is a scalar function on T

3 called the pressure at instance t .
Given a smooth initial velocity �u(·,0), a unique smooth solution of (1) exists up to some time T ∗ dependent on

the initial data, see for example [5,6,8,10] for a proof. Few a priori estimates for strong solutions of Navier–Stokes
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equations on spaces of dimension 3 exist in the literature, and the global existence (in time) of strong solutions remains
open. On the other hand, Leray [7] and Hopf [4] demonstrated the global existence of weak solutions which in addition
obey an energy inequality (see (4) below), but uniqueness of weak solutions remains open. It is known however that
any Leray–Hopf’s weak solution coincides with the strong solution on time interval [0, T ∗), and is indeed smooth as
long as t < T ∗.

Let �ω = ∇ × �u be the vorticity. It is easy to derive from the Navier–Stokes equation that

∂

∂t
|�u|2 = 2ν �u · Δ�u − �u · ∇|�u|2 − 2�u · ∇p. (2)

Integrating above equation over T
3 and performing integration by parts, one obtains an energy balance identity:

d

dt
‖�u‖2

L2 = −2ν

∫

T3

|∇ �u|2 = −2ν

∫

T3

| �ω|2. (3)

Integrating (3) over [0, t] one obtains the energy inequality

∥∥�u(·, t)∥∥2
L2 + 2ν

t∫
0

∫

T3

∣∣ �ω(·, s)∣∣2 �
∥∥�u(·,0)

∥∥2
L2 (4)

which takes exactly the same form for solutions of the heat equation. The energy inequality (4) has been known for
quite long time, and has been the important tool in the study of Navier–Stokes equations.

In this Note, we demonstrate that the energy balance equation (3) indeed contains more information than decoded
in the energy inequality (4), and deduce a monotonicity (in time variable t) of the L1-norm of the vorticity �ω. Let
us mention that a priori estimates (point-wise in time t) of the L2-norm ‖�ω(·, t)‖2 would yield the global existence
of a strong solution to the Navier–Stokes equation. Indeed a point-wise (in time) estimate for ‖�ω(·, t)‖3/2 would be
enough to settle the global existence. For further details, see, for example, [2,3,9], and in particular [1] for a local
L1-estimate for the vorticity, and the literature therein.

An L2-estimate for the vorticity �ω is still missing, we are nevertheless able to establish an estimate (point-wise
in t) for the L1-norm of the vorticity. The following is our main result:

Theorem 1. Let �u(·, t) be the strong solution of the Navier–Stokes equation on T
3 up to time T ∗. Then

t → ∥∥ �ω(·, t)∥∥
L1 +

√
2

4ν

∥∥�u(·, t)∥∥2
L2

is decreasing on [0, T ∗).

The next section is devoted to the proof of Theorem 1.

2. Proof of the main result

Taking curl operation on both sides of the Navier–Stokes equation (1), one obtains the vorticity equation

∂

∂t
�ω + (�u · ∇) �ω = νΔ �ω + S( �ω) (5)

where S( �ω) = Si
jω

j , Si
j = 1

2 (∇j u
i + ∇iu

j ) is the symmetric tensor of the rate-of-strain. The pressure p does not

appear explicitly in (5). It follows that the enstropy, | �ω|2, evolves according to the non-linear partial differential
equation

∂

∂t
| �ω|2 + (�u · ∇)| �ω|2 = νΔ| �ω|2 + 2 �ω · S( �ω) − 2ν|∇ �ω|2. (6)

Similarly, taking the divergence both sides of the Navier–Stokes equation, we see that p(·, t) at each instance t is a
solution to the Poisson equation Δp = −∇ · (�u · ∇ �u). In terms of the vorticity �ω and the symmetric tensor S = (Si

j ),
the Poisson equation may be written as

Δp = 1 | �ω|2 − |S|2, (7)

2
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where |S| is the Hilbert–Schmidt norm of (Si
j ). Integrating (7) over T

3 one obtains that

‖�ω‖L2 = √
2‖S‖L2 . (8)

Lemma 2. Let q � 1 be a constant. Then

d

dt
‖�ω‖q

Lq � −4(q − 1)

q
ν

∫

T3

∣∣∇|�ω|q/2
∣∣2 + q

∫

T3

| �ω|q |S| (9)

as long as t < T ∗.

Proof. We observe that

∣∣∇|�ω|2∣∣2 =
∑

i

(
∇i

(∑
j

ω2
j

))2

= 4
∑

i

(∑
j

ωj∇iωj

)2

� 4| �ω|2|∇ �ω|2
� 4

(| �ω|2 + ε
)|∇ �ω|2

for every ε > 0, so that

|∇ �ω|2 � |∇| �ω|2|2
4(| �ω|2 + ε)

. (10)

Let L = νΔ − �u · ∇ and Ψ be a differentiable function on [0,∞). Then(
∂

∂t
− L

)
Ψ

(| �ω|2) = Ψ ′
(

∂

∂t
− L

)
| �ω|2 − νΨ ′′∣∣∇|�ω|2∣∣2

= −2νΨ ′|∇ �ω|2 − νΨ ′′∣∣∇|�ω|2∣∣2 + 2Ψ ′ �ω · S( �ω). (11)

Choose Ψε(x) = (x + ε)q/2 where q � 1 and ε > 0, so that

Ψ ′
ε(x) = q

2
(x + ε)q/2−1 > 0

and

Ψ ′′
ε (x) = p

2

(
q

2
− 1

)
(x + ε)q/2−2,

and set Fε = (| �ω|2 + ε)q/2 for simplicity. Then Fε = Ψε(| �ω|2) and
(

∂

∂t
− L

)
Fε = −2νΨ ′

ε

{
|∇ �ω|2 + 1

2

(
q

2
− 1

) |∇| �ω|2|2
| �ω|2 + ε

}
+ 2Ψ ′

ε �ω · S( �ω)

� −2νΨ ′
ε

{
1

4

|∇| �ω|2|2
| �ω|2 + ε

+ 1

2

(
q

2
− 1

) |∇| �ω|2|2
| �ω|2 + ε

}
+ 2Ψ ′

ε �ω · S( �ω)

= −2νΨ ′
ε

q − 1

4

|∇| �ω|2|2
| �ω|2 + ε

+ 2Ψ ′
ε �ω · S( �ω) (12)

where the inequality follows from (10). Integrating above inequality over T
3 we obtain

d

dt

∫
3

Fε � −q − 1

2
ν

∫
3

Ψ ′
ε

|∇| �ω|2|2
| �ω|2 + ε

+ 2
∫

3

Ψ ′
ε �ω · S( �ω). (13)
T T T
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Letting ε ↓ 0 we thus obtain

d

dt

∫

T3

| �ω|q � −q − 1

2
ν

∫

T3

Ψ ′ |∇| �ω|2|2
| �ω|2 + 2

∫

T3

Ψ ′ �ω · S( �ω) (14)

which is equivalent to the differential inequality

d

dt
‖�ω‖q

Lq � −4

(
1 − 1

q

)
ν

∫

T3

∣∣∇|�ω|q/2
∣∣2 + q

∫

T3

| �ω|q−2 �ω · S( �ω). � (15)

We are now in a position to establish the L1-estimate for the vorticity. Letting q = 1 in (9), we obtain

d

dt
‖�ω‖L1 �

∫

T3

| �ω‖S| � ‖�ω‖L2‖S‖L2

= 1√
2
‖�ω‖2

L2 (16)

which does not depend on the viscosity ν, where the second inequality follows from the Cauchy–Schwarz inequality,
and the equality comes from (8). Next, we use the energy identity (3) and replace ‖�ω‖2

L2 by − 1
2ν

d
dt

‖�u‖2
L2 in (16). We

then obtain

d

dt
‖�ω‖L1 � −

√
2

4ν

d

dt
‖�u‖2

L2

which proves Theorem 1.

Acknowledgements

The author would like to thank Professors D. Bakry, G.Q. Chen, F.H. Lin, Y. LeJan and G. Seregin for their
comments and discussions about the a priori estimate obtained in this Note.

References

[1] P. Constantin, Navier–Stokes equations and area of interfaces, Commun. Math. Phys. 129 (1990) 241–266.
[2] H. Fujita, T. Kato, On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964) 269–315.
[3] J.G. Heywood, Viscous incompressible fluids: mathematical theory, in: Encyclopaedia of Mathematical Physics, 2006, pp. 369–379.
[4] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Mach. Nachr. 4 (1950–1951) 213–231.
[5] H.O. Kreiss, J. Lorenz, Initial-Boundary Value Problems and the Navier–Stokes Equations, Classics in Applied Mathematics, vol. 47, SIAM,

2004.
[6] O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach, New York, 1969 (Translation from the

Russian).
[7] J. Leray, Sur le mouvement d’un liquide visquex emplissent l’espace, Acta Math. 63 (1934) 193–248.
[8] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.
[9] J. Serrin, The initial value problem for the Navier–Stokes equations, in: R.T. Langer (Ed.), Nonlinear Problems, Proceedings of a Symposium,

Madison, WI, University of Wisconsin, Madison, WI, 1963, pp. 69–98.
[10] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, American Mathematical Society, 2001.


	An estimate for the vorticity of the Navier-Stokes equation
	The main result
	Proof of the main result
	Acknowledgements
	References


