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Abstract

It is well known that isoperimetric inequalities imply in a very general measure-metric-space setting appropriate concentration
inequalities. The former bound the boundary measure of sets as a function of their measure, whereas the latter bound the measure
of sets separated from sets having half the total measure, as a function of their mutual distance. We show that under a lower
bound condition on the Bakry–Émery curvature tensor of a Riemannian manifold equipped with a density, completely general
concentration inequalities imply back their isoperimetric counterparts, up to dimension independent bounds. Our method is entirely
geometric, continuing the approach of Gromov, Buser and Morgan. To cite this article: E. Milman, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Concentration et isopérimétrie sont équivalentes lorsque la courbure est bornée inférieurement. Il est connu que les
inégalités isopérimétriques impliquent dans un cadre espace-mesure-métrique très général des inégalités de concentration cor-
respondantes. Les premières bornent la mesure de bord d’un ensemble en fonction de sa mesure, tandis que les dernières bornent
la mesure d’un ensemble qui est séparé d’un ensemble ayant la moitié de la mesure totale, en fonction de leur distance mutuelle.
Nous montrons que sous une condition de borne inférieure sur le tenseur de courbure de Bakry–Émery d’une variété riemannienne
équipée d’une densité, les inégalités de concentration complètement générales impliquent inversement leurs analogues isopérimé-
triques, à des constantes près qui sont indépendantes de la dimension. Notre méthode est entièrement géométrique, continuant
l’approche de Gromov, Buser et Morgan. Pour citer cet article : E. Milman, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (Ω,d) denote a separable metric space, and let μ denote a Borel probability measure on (Ω,d). One way
to measure the interplay between the metric d and the measure μ is by means of an isoperimetric inequality. Re-
call that Minkowski’s (exterior) boundary measure of a Borel set A ⊂ Ω , which we denote here by μ+(A), is
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defined as μ+(A) := lim infε→0
μ(Ad

ε )−μ(A)

ε
, where Ad

ε := {x ∈ Ω; ∃y ∈ A d(x, y) < ε} denotes the ε extension
of A with respect to the metric d . The isoperimetric profile I = I(Ω,d,μ) is defined as the pointwise maximal function
I : [0,1] → R+, so that μ+(A) � I(μ(A)), for all Borel sets A ⊂ Ω . An isoperimetric inequality measures the rela-
tion between the boundary measure and the measure of a set, by providing a lower bound on I(Ω,d,μ) by some function
J : [0,1] → R+ which is not identically 0. Since A and Ω \ A will typically have the same boundary measure, it will
be convenient to also define Ĩ : [0,1/2] → R+ as Ĩ(v) := min(I(v), I(1 − v)).

Another way to measure the relation between d and μ is given by concentration inequalities. The log-concentration
profile K = K(Ω,d,μ) is defined as the pointwise maximal function K : R+ → R such that 1 − μ(Ad

r ) � exp(−K(r))

for all Borel sets A ⊂ Ω with μ(A) � 1/2. Note that K(r) � log 2 for all r � 0. Concentration inequalities measure
how tightly the measure μ is concentrated around sets having measure 1/2 as a function of the distance r away from
these sets, by providing a lower bound on K by some increasing function α : R+ → R ∪ {+∞}, so that α tends to
infinity. The two main differences between isoperimetric and concentration inequalities are that the latter ones only
measure the concentration around sets having measure 1/2, and do not provide any information for small distances r

(smaller than Rα := α−1(log 2)). We refer to [10] for a wider exposition on these and related topics.
It is known and easy to see that an isoperimetric inequality implies a concentration inequality, simply by “integrat-

ing” along the isoperimetric differential inequality. For instance, if γ : [log 2,∞) → R+ is a continuous function, it is
an easy exercise to show (e.g. [15, Proposition 1.7]) that:

Ĩ(v) � vγ (log 1/v) ∀v ∈ [0,1/2] ⇒ K(r) � α(r) ∀r > 0 where α−1(x) =
x∫

log 2

dy

γ (y)
. (1)

The converse statement, that a concentration inequality implies an isoperimetric inequality, is certainly false in general.
This is especially apparent when considering a space (Ω,d) with bounded diameter R, in which case K(r) = +∞
for all r > R; but if the support of μ is disconnected, we can have I(vi) = 0 for any finite collection of points
{vi} ⊂ (0,1). Of course, this type of counterexample may also be achieved without demanding that the support of μ

be disconnected, but rather by forcing μ to have little mass (“necks”) in between massive regions.
We will henceforth assume that Ω is a complete oriented n-dimensional Riemannian manifold (M,g), that d is

the induced geodesic distance (when n = 1 we will simply consider the Euclidean space (R, | · |)), and that μ is
an absolutely continuous measure with respect to the Riemannian volume form volM on M . The above examples
demonstrate that in order to have any chance of showing that concentration inequalities imply isoperimetric ones, we
need to impose some further conditions which would prevent the existence of small necks. It is therefore very natural,
at least intuitively, to require lower bounds on some appropriate curvatures of (M,g) and μ. The purpose of this note
is to announce that in this case, concentration indeed implies isoperimetry, with quantitative estimates which do not
depend on the dimension n of M .

2. Results

Definition 1. We will say that our κ-semi-convexity assumptions are satisfied (κ � 0) if dμ = exp(−ψ)d volM where
ψ ∈ C2(M), and as tensor fields on M , Ricg +Hessg ψ � −κg (or when μ may be appropriately approximated by
such measures). When κ = 0, we will say that our convexity assumptions are satisfied.

Here Ricg denotes the Ricci curvature tensor of (M,g) and Hessg denotes the second covariant derivative.
Ricg +Hessg ψ is the well-known Bakry–Émery curvature tensor, introduced in [1] (in the more abstract frame-
work of diffusion generators), which incorporates the curvature from both the geometry of (M,g) and the measure μ.
When ψ is sufficiently smooth, our κ-semi-convexity assumption is then precisely the Curvature-Dimension condition
CD(−κ,∞) (see [1]).

Theorem 1. Under our convexity assumptions:

K(r) � α(r) ∀r � Rα ⇒ Ĩ(v) � min
(
cvγ (log 1/v), cα

) ∀v ∈ [0,1/2] where γ (x) = x

α−1(x)
, (2)

where c > 0 is a universal numeric constant and cα > 0 is a constant depending solely on α.
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Theorem 1 may be generalized as follows:

Theorem 2. For any κ � 0 and increasing function α : R+ → R ∪ {+∞} so that:

∃r0 � 0 ∀r � r0 α(r) � δ0κr2 (3)

for some universal numeric constant δ0 > 0, we have under our κ-semi-convexity assumptions:

K(r) � α(r) ∀r � Rα ⇒ Ĩ(v) � min
(
c vγ (log 1/v), cα,κ

) ∀v ∈ [0,1/2] where γ (x) = x

α−1(x)
,

where c > 0 is a universal numeric constant and cα,κ is a constant depending solely on α and κ .

Since the value of α(r) for r < Rα is irrelevant for both assumption and conclusion in these theorems, one may
replace Rα in both theorems by 0; our present formulation emphasizes that it is only the tail behaviour of α which
is of importance. We also remark that the constants c, δ0, cα, cα,κ above have explicit values and formulas we will
provide in [12].

3. Optimality

Up to these constants, Theorem 1 is an almost optimal counterpart to (1). For instance, under the assumptions of
Theorem 1, we may obtain from (1) and (2) that for all p � 1:

Ĩ(v) � v log1− 1
p

1

v
⇒ K(r) �

(
r

p
+ log

1
p 2

)p

⇒ Ĩ(v) � c

p
v log1− 1

p
1

v
, (4)

where c > 0 is a universal constant. A typical model for these inequalities is obtained by considering (R, | · |) equipped
with the probability measure exp(−|x/sp|p)dx, where sp > 0 is a scaling factor (our convexity assumptions are indeed
satisfied in this case). Note the deterioration in p in the conclusion of (4), which is especially apparent in the limit as
p → ∞, where we have under the same assumptions as above:

Ĩ(v) � v log
1

v
⇒ K(r) � (log 2) exp(r) ⇒ Ĩ(v) � cv

log(1/v)

log log(2/v)
, (5)

where c > 0 is a universal constant. This phenomenon also appears in our previous joint work with Sasha Sodin [15],
where the expression x/α−1(x) (appearing in (2)) also naturally appears (as in other works too, e.g. [4]); this will be
further investigated in [12]. In any case, it is easy to show that the extra log log 2/v factor appearing in (5) is the worst
possible gap one can obtain by this procedure.

We also remark that the condition (3) on α in Theorem 2 is necessary when κ > 0 (up to the value of the nu-
meric constant δ0 in (3)) even in the one-dimensional case. This follows from an example of Chen and Wang [8],
improving a previous example of Wang [18]. For any κ > 0 and 0 < δ < 1/2, these authors constructed a measure
μ = exp(−ψ(x))dx on (R+, | · |) such that ψ ′′ � −κ and K(r) � δκr2 + cδ,κ for all r > 0, and yet (R+, | · |,μ) does
not satisfy a log-Sobolev inequality, and hence (in fact, equivalently by [2,11]), it does not satisfy a Gaussian isoperi-
metric inequality: lim infv→0 Ĩ(v)/v

√
log 1/v = 0. Moreover, it follows from [18] that 1/2 is an upper bound on the

value of δ in any possible counter example as above. It is easy to generalize this construction to arbitrary dimension,
and this demonstrates that the conclusion of Theorem 2 cannot hold without requiring that (3) holds with δ0 � 1/2.

4. Previously known results

Several variants of Theorems 1 and 2, where our concentration assumption is replaced by the weaker assumption
that

∫
Ω

exp(α(d(x0, x)))dμ(x) < ∞ for some (any) fixed x0 ∈ Ω , were previously considered by various authors,
primarily for the case α(r) = δrp (p � 1). Unfortunately, the constants in the conclusion of these previous results
always depended on the quantity

∫
d(x0, x)dμ, which under suitable normalizations (e.g. maxx∈Ω dμ/d volM(x) = 1)

may be shown to be at least as large as a dimension dependent constant (under the κ-semi-convexity assumptions).
Wang [17,18] showed that the case p = 2 and δ > κ/2 under our κ-semi-convexity assumptions implies a log-Sobolev
inequality, which by the work of Bakry–Ledoux [2] (see also Ledoux [11]) implies the right (Gaussian) isoperimetric
inequality. A more elementary approach was proposed by Bobkov [6], who considered the cases p = 1,2 under our
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convexity assumptions on (Rn, | · |,μ). Bobkov’s method is in fact very general; his results were generalized to all
p � 1 by Barthe [3], and in fact the method may be carried over to treat general manifolds with density satisfying
our convexity assumptions. Barthe and Kolesnikov [4] have obtained the most general results in this spirit (see in
particular [4, Theorem 7.2]), treating general p > 1 under the convexity assumptions and p � 2 under the κ-semi-
convexity ones, again, with dimension dependent constants in the conclusion.

The first dimension independent result was recently obtained in our previous work [14,13]. We showed that under
the convexity assumptions, arbitrarily weak concentration (arbitrary slow α increasing to infinity) implies a linear
isoperimetric inequality Ĩ(v) � cαv, with cα depending solely on α. In this respect, Theorem 1 complements our
previous result, by showing that whenever α increases faster than linearly (corresponding to stronger-than-exponential
concentration), one deduces a better-than-linear isoperimetric inequality.

The key ingredients in the proofs from [13] were diffusion semi-group estimates following Ledoux (see [11] and
the references therein), and a result from Riemannian Geometry stating that under our convexity assumptions, I is
necessarily a concave function on (0,1) (see [5] or [14] and the references therein). It has since become apparent that
techniques from Riemannian Geometry and Geometric Measure Theory will play a fundamental role in any further
progress in these directions. Indeed, the proofs of Theorems 1 and 2 are purely geometric, based on a generalized
version of the Heintze–Karcher comparison theorem due to Bayle [5] and Morgan [16], and in fact no longer require
any semi-group arguments. In this sense, we continue the geometric approach of Gromov [9], Buser [7] and Morgan
[16] for deducing isoperimetric inequalities.

Theorems 1 and 2 have various further applications whenever our κ-semi-convexity assumptions are satisfied:
obtaining isoperimetric inequalities on compact manifolds-with-density (generalizing [6, Corollary 2.2]), equivalence
between transportation cost inequalities with different cost functions, and others. These will be described in detail
in [12].
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