C. R. Acad. Sci. Paris, Ser. I 347 (2009) 55-58

Functional Analysis

A direct proof of the functional Santaló inequality

Joseph Lehec
Université Paris-Est, Laboratoire d'analyse et de mathématiques appliquées, cité Descartes, 5, boulevard Descartes, 77454 Marne la Vallée cedex 2, France
Received 4 November 2008; accepted 24 November 2008
Available online 18 December 2008
Presented by Gilles Pisier

Abstract

We give a simple proof of a functional version of the Blaschke-Santaló inequality due to Artstein, Klartag and Milman. The proof is by induction on the dimension and does not use the Blaschke-Santaló inequality. To cite this article: J. Lehec, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une preuve directe de l'inégalité de Santaló fonctionnelle. On présente une démonstration simple d'une version fonctionnelle de l'inégalité de Blaschke-Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel à l'inégalité ensembliste. Pour citer cet article : J. Lehec, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For $x, y \in \mathbb{R}^{n}$, we denote their inner product by $\langle x, y\rangle$ and the Euclidean norm of x by $|x|$. If A is a subset of \mathbb{R}^{n}, we let $A^{\circ}=\left\{x \in \mathbb{R}^{n} \mid \forall y \in A,\langle x, y\rangle \leqslant 1\right\}$ be its polar body. The Blaschke-Santaló inequality states that any convex body K in \mathbb{R}^{n} with center of mass at 0 satisfies

$$
\begin{equation*}
\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{\circ}\right) \leqslant \operatorname{vol}_{n}(D) \operatorname{vol}_{n}\left(D^{\circ}\right)=v_{n}^{2} \tag{1}
\end{equation*}
$$

where vol_{n} stands for the volume, D for the Euclidean ball and v_{n} for its volume. Let g be a non-negative Borel function on \mathbb{R}^{n} satisfying $0<\int g<\infty$ and $\int|x| g(x) \mathrm{d} x<\infty$, then $\operatorname{bar}(g)=\left(\int g\right)^{-1}\left(\int g(x) x \mathrm{~d} x\right)$ denotes its center of mass (or barycenter). The center of mass (or centroid) of a measurable subset of \mathbb{R}^{n} is by definition the barycenter of its indicator function.

Let us state a functional form of (1) due to Artstein, Klartag and Milman [1]. If f is a non-negative Borel function on \mathbb{R}^{n}, the polar function of f is the log-concave function defined by

$$
f^{\circ}(x)=\inf _{y \in \mathbb{R}^{n}}\left(\mathrm{e}^{-\langle x, y\rangle} f(y)^{-1}\right)
$$

[^0]Theorem 1.1 (Artstein, Klartag, Milman). If f is a non-negative integrable function on \mathbb{R}^{n} such that f° has its barycenter at 0 , then

$$
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x \int_{\mathbb{R}^{n}} f^{\circ}(y) \mathrm{d} y \leqslant\left(\int_{\mathbb{R}^{n}} \mathrm{e}^{-\frac{1}{2}|x|^{2}} \mathrm{~d} x\right)^{2}=(2 \pi)^{n} .
$$

In the special case where the function f is even, this result follows from an earlier inequality of Keith Ball [2]; and in [4], Fradelizi and Meyer prove something more general (see also [5]). In the present Note we prove the following:

Theorem 1.2. Let f and g be non-negative Borel functions on \mathbb{R}^{n} satisfying the duality relation

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{n}, \quad f(x) g(y) \leqslant \mathrm{e}^{-\langle x, y\rangle} . \tag{2}
\end{equation*}
$$

If $f(o r g)$ has its barycenter at 0 then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x \int_{\mathbb{R}^{n}} g(y) \mathrm{d} y \leqslant(2 \pi)^{n} . \tag{3}
\end{equation*}
$$

This is slightly stronger than Theorem 1.1 in which the function that has its barycenter at 0 should be log-concave. The point of this Note is not really this improvement, but rather to present a simple proof of Theorem 1.1. Theorem 1.2 yields an improved Blaschke-Santaló inequality, obtained by Lutwak in [6], with a completely different approach.

Corollary 1.3. Let S be a star-shaped (with respect to 0) body in \mathbb{R}^{n} having its centroid at 0 . Then

$$
\begin{equation*}
\operatorname{vol}_{n}(S) \operatorname{vol}_{n}\left(S^{\circ}\right) \leqslant v_{n}^{2} . \tag{4}
\end{equation*}
$$

Proof. Let $N_{S}(x)=\inf \{r>0 \mid x \in r S\}$ be the gauge of S and $\phi_{S}=\exp \left(-\frac{1}{2} N_{S}^{2}\right)$. Integrating ϕ_{S} and the indicator function of S on level sets of N_{S}, it is easy to see that $\int_{\mathbb{R}^{n}} \phi_{S}=c_{n} \operatorname{vol}_{n}(S)$ for some constant c_{n} depending only on the dimension. Replacing S by the Euclidean ball in this equality yields $c_{n}=(2 \pi)^{n / 2} v_{n}^{-1}$. Therefore it is enough to prove that

$$
\begin{equation*}
\int \phi_{S} \int \phi_{S^{\circ}} \leqslant(2 \pi)^{n} \tag{5}
\end{equation*}
$$

Similarly, it is easy to see that $\operatorname{bar}\left(\phi_{S}\right)=c_{n}^{\prime} \operatorname{bar}(S)=0$. Besides, we have $\langle x, y\rangle \leqslant N_{S}(x) N_{S^{\circ}}(y) \leqslant \frac{1}{2} N_{S}(x)^{2}+$ $\frac{1}{2} N_{S^{\circ}}(y)^{2}$, for all $x, y \in \mathbb{R}^{n}$. Thus ϕ_{S} and $\phi_{S^{\circ}}$ satisfy (2), then by Theorem 1.2 we get (5).

2. Main results

Theorem 2.1. Let f be a non-negative Borel function on \mathbb{R}^{n} having a barycenter. Let H be an affine hyperplane splitting \mathbb{R}^{n} into two half-spaces H_{+}and H_{-}. Define $\lambda \in[0,1]$ by $\lambda \int_{\mathbb{R}^{n}} f=\int_{H_{+}} f$. Then there exists $z \in \mathbb{R}^{n}$ such that for every non-negative Borel function g

$$
\begin{equation*}
\text { If }\left(\forall x, y \in \mathbb{R}^{n}, f(z+x) g(y) \leqslant \mathrm{e}^{-\langle x, y\rangle}\right) \quad \text { then } \int_{\mathbb{R}^{n}} f \int_{\mathbb{R}^{n}} g \leqslant \frac{1}{4 \lambda(1-\lambda)}(2 \pi)^{n} \text {. } \tag{6}
\end{equation*}
$$

In particular, in every median $H\left(\lambda=\frac{1}{2}\right)$ there is a point z such that for all g

$$
\begin{equation*}
\text { If }\left(\forall x, y \in \mathbb{R}^{n}, f(z+x) g(y) \leqslant \mathrm{e}^{-\langle x, y\rangle}\right) \quad \text { then } \int_{\mathbb{R}^{n}} f \int_{\mathbb{R}^{n}} g \leqslant(2 \pi)^{n} \text {. } \tag{7}
\end{equation*}
$$

A similar result concerning convex bodies (instead of functions) was obtained by Meyer and Pajor in [7].
Let us derive Theorem 1.2 from the latter. Let f, g satisfy (2). Assume for example that $\operatorname{bar}(g)=0$, then 0 cannot be separated from the support of g by a hyperplane, so there exists $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$ such that 0 belongs to the
interior of $\operatorname{conv}\left\{x_{1} \ldots x_{n+1}\right\}$ and $g\left(x_{i}\right)>0$ for $i=1 \ldots n+1$. Then (2) implies that $f(x) \leqslant C \mathrm{e}^{-\|x\|}$, for some $C>0$, where $\|x\|=\max \left(\left\langle x, x_{i}\right\rangle \mid i \leqslant n+1\right)$. Assume also that $\int f>0$, then f has a barycenter. Apply the " $\lambda=1 / 2$ " part of Theorem 2.1 to f. There exists $z \in \mathbb{R}^{n}$ such that (7) holds. On the other hand, by (2)

$$
f(z+x) g(y) \mathrm{e}^{\langle y, z\rangle} \leqslant \mathrm{e}^{-\langle z+x, y\rangle} \mathrm{e}^{\langle y, z\rangle}=\mathrm{e}^{-\langle x, y\rangle}
$$

for all $x, y \in \mathbb{R}^{n}$. Therefore

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x \int_{\mathbb{R}^{n}} g(y) \mathrm{e}^{\langle y, z\rangle} \mathrm{d} y \leqslant(2 \pi)^{n} . \tag{8}
\end{equation*}
$$

Integrating with respect to $g(y) \mathrm{d} y$ the inequality $1 \leqslant \mathrm{e}^{\langle y, z\rangle}-\langle y, z\rangle$ we get

$$
\int_{\mathbb{R}^{n}} g(y) \mathrm{d} y \leqslant \int_{\mathbb{R}^{n}} g(y) \mathrm{e}^{\langle y, z\rangle} \mathrm{d} y-\int_{\mathbb{R}^{n}}\langle y, z\rangle g(y) \mathrm{d} y .
$$

Since $\operatorname{bar}(g)=0$, the latter integral is 0 and together with (8) we obtain (3). Observe also that this proof shows that Theorem 2.1 in dimension n implies Theorem 1.2 in dimension n.

In order to prove Theorem 2.1, we need the following logarithmic form of the Prékopa-Leindler inequality. For details on Prékopa-Leindler, we refer to [3].

Lemma 2.2. Let ϕ_{1}, ϕ_{2} be non-negative Borel functions on \mathbb{R}_{+}. If $\phi_{1}(s) \phi_{2}(t) \leqslant \mathrm{e}^{-s t}$ for every s, t in \mathbb{R}_{+}, then

$$
\begin{equation*}
\int_{\mathbb{R}_{+}} \phi_{1}(s) \mathrm{d} s \int_{\mathbb{R}_{+}} \phi_{2}(t) \mathrm{d} t \leqslant \frac{\pi}{2} . \tag{9}
\end{equation*}
$$

Proof. Let $f(s)=\phi_{1}\left(\mathrm{e}^{s}\right) \mathrm{e}^{s}, g(t)=\phi_{2}\left(\mathrm{e}^{t}\right) \mathrm{e}^{t}$ and $h(r)=\exp \left(-\mathrm{e}^{2 r} / 2\right) \mathrm{e}^{r}$. For all $s, t \in \mathbb{R}$ we have $\sqrt{f(s) g(t)} \leqslant$ $h\left(\frac{t+s}{2}\right)$, hence by Prékopa-Leindler $\int_{\mathbb{R}} f \int_{\mathbb{R}} g \leqslant\left(\int_{\mathbb{R}} h\right)^{2}$. By change of variable, this is the same as $\int_{\mathbb{R}_{+}} \phi_{1} \int_{\mathbb{R}_{+}} \phi_{2} \leqslant$ $\left(\int_{\mathbb{R}_{+}} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u\right)^{2}$ which is the result.

3. Proof of Theorem 2.1

Clearly we can assume that $\int f=1$. Let μ be the measure with density f. In the sequel we let $f_{z}(x)=f(z+x)$ for all x, z.

We prove the theorem by induction on the dimension. Let f be a non-negative Borel function on the line, let $r \in \mathbb{R}$ and $\lambda=\mu([r, \infty)) \in[0,1]$. Let g satisfy $f(r+s) g(t) \leqslant \mathrm{e}^{-s t}$, for all s, t. Apply Lemma 2.2 twice: first to $\phi_{1}(s)=f(r+s)$ and $\phi_{2}(t)=g(t)$ then to $\phi_{1}(s)=f(r-s)$ and $\phi_{2}(t)=g(-t)$. Then

$$
\int_{\mathbb{R}_{+}} f_{r} \int_{\mathbb{R}_{+}} g \leqslant \frac{\pi}{2} \quad \text { and } \quad \int_{\mathbb{R}_{-}} f_{r} \int_{\mathbb{R}_{-}} g \leqslant \frac{\pi}{2} .
$$

Therefore $\int_{\mathbb{R}_{+}} g \leqslant \frac{\pi}{2 \lambda}$ and $\int_{\mathbb{R}_{-}} g \leqslant \frac{\pi}{2(1-\lambda)}$, which yields the result in dimension 1 .
Assume the theorem to be true in dimension $n-1$. Let H be an affine hyperplane splitting \mathbb{R}^{n} into two half-spaces H_{+}and H_{-}and let $\lambda=\mu\left(H_{+}\right)$. Provided that $\lambda \neq 0,1$ we can define b_{+}and b_{-}to be the barycenters of $\mu_{\mid H_{+}}$ and $\mu_{\mid H_{-}}$, respectively. Since $\mu(H)=0$, the point b_{+}belongs to the interior of H_{+}, and similarly for b_{-}. Hence the line passing through b_{+}and b_{-}intersects H at one point, which we call z. Let us prove that z satisfies (6), for all g. Clearly, replacing f by f_{z} and H by $H-z$, we can assume that $z=0$. Let g satisfy

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{n}, \quad f(x) g(y) \leqslant \mathrm{e}^{-\langle x, y\rangle} . \tag{10}
\end{equation*}
$$

Let e_{1}, \ldots, e_{n} be an orthonormal basis of \mathbb{R}^{n} such that $H=e_{n}^{\perp}$ and $\left\langle b_{+}, e_{n}\right\rangle>0$. Let $v=b_{+} /\left\langle b_{+}, e_{n}\right\rangle$ and A be the linear operator on \mathbb{R}^{n} that maps e_{n} to v and e_{i} to itself for $i=1 \ldots n-1$ and let $B=\left(A^{-1}\right)^{t}$. Define

$$
F_{+}: y \in H \mapsto \int_{\mathbb{R}_{+}} f(y+s v) \mathrm{d} s \quad \text { and } \quad G_{+}: y^{\prime} \in H \mapsto \int_{\mathbb{R}_{+}} g\left(B y^{\prime}+t e_{n}\right) \mathrm{d} t .
$$

By Fubini, and since A has determinant $1, \int_{H} F_{+}=\int_{H_{+}} f \circ A=\mu\left(H_{+}\right)=\lambda$. Also, letting P be the projection with range H and kernel $\mathbb{R} v$, we have

$$
\operatorname{bar}\left(F_{+}\right)=\frac{1}{\lambda} \int_{H_{+}} P(A x) f(A x) \mathrm{d} x=\frac{1}{\lambda} P\left(\int_{H_{+}} x f(x) \mathrm{d} x\right)=P\left(b_{+}\right),
$$

and this is 0 by definition of P. Since $\left\langle A x, B x^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle$ for all $x, x^{\prime} \in \mathbb{R}^{n}$, we have $\left\langle y+s v, B y^{\prime}+t e_{n}\right\rangle=\left\langle y, y^{\prime}\right\rangle+s t$ for all $s, t \in \mathbb{R}$ and $y, y^{\prime} \in H$. So (10) implies

$$
f(y+s v) g\left(B y^{\prime}+t e_{n}\right) \leqslant \mathrm{e}^{-s t-\left\langle y, y^{\prime}\right\rangle} .
$$

Applying Lemma 2.2 to $\phi_{1}(s)=f(y+s v)$ and $\phi_{2}(t)=g\left(B y^{\prime}+t e_{n}\right)$ we get $F_{+}(y) G_{+}\left(y^{\prime}\right) \leqslant \frac{\pi}{2} \mathrm{e}^{-\left\langle y, y^{\prime}\right\rangle}$ for every $y, y^{\prime} \in H$. Recall that $\operatorname{bar}\left(F_{+}\right)=0$, then by the induction assumption (which implies Theorem 1.2 in dimension $n-1$)

$$
\begin{equation*}
\int_{H} F_{+} \int_{H} G_{+} \leqslant \frac{\pi}{2}(2 \pi)^{n-1} \tag{11}
\end{equation*}
$$

hence $\int_{H_{+}} g(B x) \mathrm{d} x \leqslant \frac{1}{4 \lambda}(2 \pi)^{n}$. In the same way $\int_{H_{-}} g(B x) \mathrm{d} x \leqslant \frac{1}{4(1-\lambda)}(2 \pi)^{n}$, adding these two inequalities, we obtain

$$
\int_{\mathbb{R}^{n}} g(B x) \mathrm{d} x \leqslant \frac{1}{4 \lambda(1-\lambda)}(2 \pi)^{n}
$$

which is the result since B has determinant 1 .

References

[1] S. Artstein, B. Klartag, V. Milman, The Santaló point of a function, and a functional form of Santaló inequality, Mathematika 51 (2005) 33-48.
[2] K. Ball, Isometric problems in ℓ_{p} and sections of convex sets, Doctoral thesis, University of Cambridge, 1986.
[3] K. Ball, An elementary introduction to modern convex geometry, in: S. Levy (Ed.), Flavors of Geometry, Cambridge University Press, 1997.
[4] M. Fradelizi, M. Meyer, Some functional forms of Blaschke-Santaló inequality, Math. Z. 256 (2) (2007) 379-395.
[5] J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) (2008), in press.
[6] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1) (1991) 39-68.
[7] M. Meyer, A. Pajor, On the Blaschke Santaló inequality, Arch. Math. (Basel) 55 (1990) 82-93.

[^0]: E-mail address: joseph.lehec@univ-mlv.fr.

