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Abstract

As a consequence of the vector-valued Hardy inequality it is given a characterization of upper triangular trace class matrices
completely similar to that of classical Hardy space of analytic functions H 1, as may be found for instance in Pavlović’s book. To
cite this article: N. Popa, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une caractérisation de la classe des matrices supérieurement triangulaires à trace. On donne une caractérisation de la classe
des matrices supérieurement triangulaires à trace comme une conséquence de l’inégalité vectorielle de Hardy. Cette caractérisation
est complètement similaire de celle valable por les espaces de Hardy. Pour citer cet article : N. Popa, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the book of Pavlović ([3, page 96]) there is the following beautiful characterization of functions belonging to
the Hardy space H 1 = {f :D → C, such that f is analytic and ‖f ‖1 = sup0<r<1

∫ 2π

0 |f (reit )dt < ∞}:
Pavlović’s Theorem. For a function f analytic in D the following assertions are equivalent:

(a) f ∈ H 1;

(b) sup
n

1

an

n∑
j=0

1

j + 1

∥∥sj (f )
∥∥

1 < ∞;

(c) sup
n

‖Pnf ‖1 < ∞.

Here, for a function f analytic in D let

Pnf = 1

an

n∑
j=0

1

j + 1
sj (f ), where an =

n∑
j=0

1

j + 1
(n = 0,1,2, . . .)
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and sj (f ) are the partial sums of the Taylor series of f .
An analogue of this result using the following vector-valued Hardy inequality (see [1] for this inequality):∑

k�0

(k + 1)−1
∥∥f̂ (k)

∥∥
1 � C‖f ‖1 for f ∈ H 1

X (1)

is also true and is presented below. Here, as in [2], X is a complex Banach space, L1
X is the space of all X-valued

2π -periodic functions on the real line R which are Bochner absolutely integrable under the norm

‖f ‖1 =
[
(2π)−1

π∫
−π

∥∥f (t)
∥∥dt

]1/p

, H 1
X = {

f ∈ L1
X; f̂ (j) = 0 for j < 0

}
,

where f̂ (j) = (2π)−1
∫ π

−π
e−ij tf (t)dt .

We explain some notations and notions used in what follows.
T1 means the space of all upper triangular matrices of trace class, endowed with the usual trace class norm ‖A‖ =∑∞
n=1 αn(A), where αn(A) is the nth-singular number of A, i.e. the nth-eigenvalue of the (AA∗)1/2.
We use the Schur (Hadamard) product A ∗ B of two matrices A and B as being the matrix C whose entries are

defined by ci,j = ai,j bi,j for all indices i and j .
A special class of infinite matrices which is used often in this note, is the class of Toeplitz matrices.
Let A = (ai,j )i,j�1 be an infinite matrix. If there is a sequence of complex numbers (ak)

+∞
k=−∞, such that ai,j =

aj−i for all i, j ∈ N, then A is called a Toeplitz matrix. To a Toeplitz matrix A given by the sequence (ak)k∈Z we
associate a 2π -periodic distribution f = ∑∞

k=0 akeikt , where t ∈ [0,1) and conversely.
Now we have the following result:

Theorem 1. Let A be an upper triangular matrix. The following assertions are equivalent:

(a) A ∈ T1;
(b) sup

n

1

an

n∑
j=0

1

j + 1

∥∥sj (A)
∥∥ < ∞;

(c) sup
n

‖PnA‖ < ∞.

Here

PnA = 1

an

n∑
j=0

1

j + 1
sj (A), where an =

n∑
j=0

1

j + 1
(n = 0,1,2, . . .),

sj (A) = ∑j

k=0 Ak and Ak is the kth-diagonal matrix of A, i.e. Ak is the matrix whose entries a′
i,j are given by

a′
i,j =

{
ai,j if j − i = k,

0 otherwise.

Proof. Obviously (b) ⇒ (c).
(a) ⇒ (b). Let A ∈ T1, and for fixed n � 2, w ∈ D, and r = 1 − 1

n
< 1, define the matrix-valued function g(z) =

(1−rz)−1[A∗C(rwz)] (|z| � 1), where C(z) is the Toeplitz matrix corresponding to the function 1
1−z

for each z ∈ D.
Then we have:

g(z) =
( ∞∑

k=0

Akr
kwkzk

)( ∞∑
l=0

rlzl

)
=

∞∑
k,l=0

Akw
krk+lzk+l

=
∞∑

m=0

(
m∑

k=0

Akw
k

)
rmzm =

∞∑
m=0

sm
(
A ∗ C(w)

)
rmzm.

Hence ĝ(m) = sm(A ∗ C(w))rmzm, m = 0,1,2, . . . .
It is well known (and easy to see) that
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‖smA‖T1 � C ln(m + 1)‖A‖T1 ∀A ∈ T1 and m ∈ N, (2)

where C > 0 is an absolute constant.
g ∈ H 1

T1
since, by (2), we have∥∥sm

(
A ∗ C(w)

)∥∥
T1

� 1

1 − |w| ‖smA‖T1 � C ln(m + 1)

1 − |w| ∀m ∈ N and |w| < 1

therefore
∞∑

m=0

∥∥sm
(
A ∗ C(w)

)∥∥
T1

rm � C
∑∞

m=0 rm ln(m + 1)

1 − |w| < ∞.

Then
∞∑

j=0

1

j + 1

∥∥sj
(
A ∗ C(w)

)∥∥
T1

rj =
∞∑

j=0

1

j + 1

∥∥ĝ(j)
∥∥

T1

(
by (1) for X = T1

)

� C‖g‖H 1
T1

= ‖A ∗ C(rweit )‖T1

|1 − reit | for all t ∈ [0,2π).

Since rj = (1 − 1
n
)j � c ∀0 � j � n, where c > 0 is an absolute constant, we have:

n∑
j=0

1

j + 1

∥∥sj
(
A ∗ C(w)

)∥∥
T1

� C

2π∫
0

∥∥g
(
reit)∥∥

T1

dt

2π
= C

2π∫
0

‖A ∗ C(rweit )‖T1

|1 − reit |
dt

2π
.

Integrating this inequality over the circle |w| = 1 and since sj (A ∗ C(w)) = sj (A) ∗ C(w), we find, using
limw→eiθ ‖sj (A) ∗ C(w)‖T1 = ‖sjA ∗ C(eiθ )‖T1 ∀j , that

n∑
j=0

1

j + 1

2π∫
0

∥∥sjA ∗ C
(
eiθ )∥∥

T1

dθ

2π
� C′

2π∫
0

2π∫
0

‖A ∗ C(rei(θ+t))‖T1

|1 − reit |
dt

2π

dθ

2π

= (by Fubini’s theorem) C′
2π∫

0

( 2π∫
0

∥∥A ∗ Pr(t + θ)
∥∥

T1

dθ

2π

)
dt

2π |1 − reit | � C′′‖A‖T1 lnn,

where Pr(t + θ) is the usual Poisson kernel on the unit circle and C′′ > 0 is an absolute constant.
But denoting by Eθ the Toeplitz matrix corresponding to δθ the Dirac measure concentrated in θ, it is easy to see

that

‖B‖ = ‖B ∗ Eθ‖. (∗)

We have obviously that

1

2π

2π∫
0

∥∥sj (A) ∗ C
(
eiθ )∥∥dθ = 1

2π

2π∫
0

∥∥sj (A) ∗ Eθ

∥∥dθ

and by (∗) it follows that:

n∑
j=0

1

j + 1

∥∥sj (A)
∥∥ �

n∑
j=1

1

j + 1

2π∫
0

∥∥sj (A) ∗ C
(
eiθ )∥∥ dθ

2π
� C‖A‖ lnn,

that is 1
an

∑n
j=0

1
j+1‖sj (A)‖ � C1‖A‖ and (b) holds.

(c) ⇒ (a). First, it is clear that if A is a finite matrix, then ‖A‖S1 � supn ‖PnA‖S1 . Now assume that A is any matrix
such that supn ‖PnA‖S1 < ∞. Let Em be the canonical projection which projects a matrix to its submatrix of order m

at the left upper corner. Since Pn and Em commute, we find that supm supn ‖PnEmA‖S1 < ∞.
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By the preceding remark, we have supm ‖EmA‖S1 � supn ‖PnEmA‖S1 ; whence A ∈ S1 and ‖A‖S1 � supn ‖PnA‖S1 .
This inequality holds without the assumption that A is upper triangular. �

A simple consequence of the previous theorem is:

Corollary 2. If A ∈ T1, then

lim
n

1

an

n∑
j=0

1

j + 1

∥∥A − sj (A)
∥∥ = 0 (3)

and, consequently,

lim
n

1

an

n∑
j=0

1

j + 1

∥∥sj (A)
∥∥ = ‖A‖. (4)

Proof. Obviously (3) holds if A is a finite matrix. Since finite matrices are dense in T1 the proof of (3) is over. The
second assertion follows immediately from (3). �

We remark that B. Smith [4] proved 1983 the relation (4) for f ∈ H 1 instead of A ∈ T1, what motived Pavlović to
give his theorem.

As a consequence of this result we have:

Corollary 3. If A ∈ T1 then lim infn→∞ ‖A − sn(A)‖ = 0.

Remark 4. 1. A Banach space X is of (H 1 − �1)-Fourier type provided for every multiplier sequence m = (mk)k�0
such that there exists a constant K = K(m,X) so that for every analytic trigonometric polynomial f

(
∑∞

j=0 |mj f̂ (nj )|) � K‖f ‖, we have the same inequality where the norm ‖ · ‖X is used instead of the absolute

value | · |. It was proved in [1] that S1 has the (H 1 − �1)-Fourier type. Then the following matrix version of Hardy’s
inequality of [2] holds:

Generalized Shield’s inequality. There is a constant C > 1 such that given any set n1 < n2 < · · · < nk ⊂ Z, and

A = ∑∞
k=1 Ank

∈ S1, we have
∑∞

k=1
‖Ank

‖S1
k

� C‖A‖S1 .
Indeed, view the (H 1 − �1)-Fourier type property of S1, the inequality above holds for every upper triangular

matrix A. Denoting by S the unilateral shift to the right, it is easy to see that S n, is a bounded operator on S1 for some
fixed n ∈ N. (Of course the norm of S n may depend on n.) But S n1A is an upper triangular matrix, so the generalized
Shield’s inequality holds.

2. From the above inequality it follows also the matrix version of the positive answer to a Littlewood conjecture
(see [2]).

There is a constant C > 1 such that given any set {n1 < n2 < · · · < nN } ⊂ Z and a matrix A = ∑N
k=1 Ank

with
‖Ank

‖S1 � 1 for all k, then ‖A‖S1 � C logN .
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