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Abstract

We consider the Ricci flow ∂
∂t

g = −2Ric on the 3-dimensional complete noncompact manifold (M,g(0)) with nonnegative
curvature operator, i.e., Rm � 0, and |Rm(p)| → 0, as d(o,p) → ∞. We prove that the Ricci flow on such a manifold is nonsingular
in any finite time. To cite this article: L. Ma, A. Zhu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Flot de Ricci non singulier sur une variété tridimensionnelle non compacte. Nous considérons le flot de Ricci ∂
∂t

g = −2Ric
sur la variété tridimensionnelle complète de courbure non négatif, c’est-à-dire Rm � 0 et |Rm(p)| → 0 si d(o,p) → ∞. Nous
démontrons que le flot de Ricci sur une telle variété est non singular pour tout temps fini. Pour citer cet article : L. Ma, A. Zhu,
C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note nous considérons le flot de la courbure de Ricci ∂g
∂t

(t) = −2 Riccig(t) sur des variétés complètes
de dimension 3 et d’opérateur de courbure positif ou nul. Nous supposons que le tenseur de Riemann, |Riem(p)|,
tend vers 0 lorsque le point p tend vers l’infini. Nous démontrons alors que le flot de Ricci est défini pour tout temps
t > 0 et est non singulier. Ce type de questions a été posé par R. Hamilton. Sachant que l’existence en temps petit des
solutions est prouvée par W.-X. Shi, il ne reste qu’à montrer que la courbure est bornée sur tout intervalle de temps
fini. Plus précisément dans ce travail nous prouvons le théorème suivant :

Théorème 0.1. Supposons que (M,g(t)) est un flot de Ricci pour t ∈ [0, T ) sur une variété de dimension 3 com-
plète non compacte, connexe. Nous supposons que l’opérateur de courbure de (M,g(0)) est positif ou nul et vérifie
|Riem(p,g(0))| → 0 lorsque d(0,p) → +∞. Alors T = +∞, c’est-à-dire que le flot est non singulier sur tout
intervalle de temps fini.

E-mail address: lma@math.tsinghua.edu.cn (L. Ma).
1631-073X/$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2008.12.002
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Par le théorème de l’âme de Cheeger–Gromoll et Meyer la variété est difféomorphe à R3. Rappelons deux re-
marques importantes :

1) Si Riem(x, t) := Riemg(t)(x) a une valeur propre nulle, alors, par le principe du maximum fort, la métrique le
long du flot relevé au revêtement universel se décompose en un produit et la condition sur la courbure ne peut être
satisfaite que si la métrique est constamment plate. Dans ce cas, il est évident que le flot existe pour tout temps.

2) La convergence lorsque t → +∞ est illustrée par les exemples donnés en introduction et est plus subtile que pour
le cas ou t tend vers une limite finie.

Nous utilisons de manière importante les notions et idées introduites par G. Perelman dans ses travaux et nous nous
appuyons sur les détails fournis dans l’ouvrage récent de J. Morgan et G. Tian.

1. Introduction

The aim of this Note is to get a global existence of Ricci flow with bounded nonnegative curvature operator in
three dimensions. This kind of question was asked by Hamilton [6]. We remark that the local existence of the flow
was obtained by Shi [15]. So we only need to show that the curvature is bounded in finite time. Our research is based
on previous important results obtained by Hamilton and Perelman [6,9,10], which will be recalled in next section.

The Ricci flow ∂
∂t

gij = −2Rij on a compact manifold was first introduced by Richard Hamilton [7]. Using it,
Hamilton had obtained an remarkable theorem [7] that a compact 3-manifold with positive Ricci curvature can be
deformed by the Ricci flow to a space form. Then we met a useful program, the so called Hamilton’s program, which
is to prove Poincaré conjecture and Thurston’s geometrization conjecture by Ricci flow. In three remarkable papers
[12–14], Perelman significantly advanced the theory of the Ricci flow. Perelman introduced important results such as a
noncollapsing, canonical neighborhood, and analysis of the high curvature regions. Perelman also analyzed one of the
special solution to the Ricci flow, the κ solution, which is usually the limit solution of the blow up sequence. Before
the works of Perelman, Hamilton [6] had defined asymptotic volume for a complete noncompact manifold, and he had
obtained that the asymptotic volume is constant under Ricci flow with bounded curvature. By an induction argument,
Perelman obtained that the asymptotic volume is zero when the solution is an κ solution. In order to analyze the
high curvature region, Hamilton obtained a very interesting compactness result of Ricci flow [8]. However, in order
to apply this compactness, one has to check the assumptions of noncollapsing and bounded curvature. We shall use
ideas above to study nonsingular Ricci flow on a complete noncompact Riemannian manifold of dimension three. The
purpose of this work is to show that the following result is true:

Theorem 1.1. Assume that (M,g(t)), t ∈ [0, T ) is a Ricci flow on the 3-dimensional connected complete noncom-
pact Riemannian manifold (M,g(0)). Suppose the curvature operator of the initial metric g(0) is positive, i.e.,
Rm(g(0)) � 0 with |Rm(p,g(0))| → 0, d(o,p) → ∞. Then T = ∞, i.e., Ricci flow is nonsingular in finite time
on such a manifold.

By the Soul theorem (Cheeger–Gromoll–Meyer, see Theorem 2.7 in p. 56 in [10]), each (M,g(t)) is diffeomorphic
to R3.

We make two remarks here:

(1) If Rm(x, t) := Rm(x, g(t)) has a zero eigenvalue, then, by the strong maximum principle, we can split the flow
on the level of its covering space. Then the condition |Rm(p)| → 0, as d(o,p) → ∞, cannot be satisfied, unless
the manifold is flat; in this case the Ricci flow exists for all time (see Corollary 4.20 in [10]).

(2) We point out that in our proof of Theorem 1.1, the convergence means the geometric convergence (Definition 5.12
in p. 114 in [10]). However, as for the convergence of the global flow as t → ∞, we have following interesting
example, which shows that the convergence question is subtle:

Example 1.2. Consider the revolution paraboloid x4 = x2
1 + x2

2 + x2
3 , where (x1, . . . , x4) ∈ R4. We know that its

curvature operator satisfies Rm(x) → 0, x → ∞ and Rm > 0. By Theorem 1.1, the Ricci flow on it can a nonsingular
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global flow. Using Hamilton’s result mentioned above, it is not hard to see that the asymptotic volume of the flow is 0,
so the paraboloid cannot converge to flat R3 as t → ∞ in any topology which preserves the asymptotic volume.

Example 1.3. Let us consider another example often used by physicists. Let the 3-dimensional Ricci flow (M,g(t))

satisfy the assumptions of Theorem 1.1. Assume also that it is also asymptotical to a cone (R3 − BR(0))/Γ (where
R � 1 and Γ is a finite subgroup of O(3)) at infinity for each fixed time t , which implies that the asymptotic volume
is between 0 and ω, where ω is the volume of unit ball B(0,1) ⊂ R3. Again, we have a global flow, but we cannot
have any convergence result of the flow as t → ∞ in any topology which preserves the asymptotic volume.

We remark that in the radial symmetrical case, a similar result was obtained in [11], where another assumption
such as the asymptotic flatness was used.

Remark 1.4. X. Dai and L. Ma proved that the Ricci flow on the asymptotically flat manifold cannot converge
uniformly to the flat manifold by using ADM mass (see [4]). One may see our previous work [4] for more results in
this direction.

2. Preliminary results

In this section, we recall the deep results of Perelman, Hamilton, and others, which will be needed in the proof of
Theorem 1.1.

By the monotonicity of W functional and the reduced volume (see [12] for the definitions), Perelman proved
the noncollapsing of Ricci flow on a compact manifold. Furthermore, Perelman obtained the following convergence
theorems about Ricci flow on 3-manifolds (see [12,9], and in particular Chapter 11 in [10] for more detail), which we
will use:

Theorem 2.1. Fix canonical neighborhood constants (C, ε), ([10, pp. 239–241]) and noncollapsing constants r > 0,
κ > 0. Let (Mn,Gn, xn) be a sequence of based 3-dimensional Ricci flows (the same result is true for based general-
ized 3-dimensional Ricci flow, for its definition, see [10], Definition 3.37 in p. 87). We set tn = t (xn) and Qn = R(xn).

We denote by Mn the time tn time slice of Mn. We assume:

(i) Each (Mn,Gn) has time interval of definition contained in [0,∞) and has curvature pinched toward positive
([10], p. 251, Definition 10.1);

(ii) Every point yn ∈ (Mn,Gn) with t (yn) � tn and R(yn) � 4R(xn) has a strong (C, ε) canonical neighborhood;
(iii) limn→∞ Qn = ∞;
(iv) For each A < ∞, for all n sufficiently large, the ball B(xn, tn,AQ

−1/2
n ) has compact closure in Mn and the flow

is κ noncollapsed on scales � r at each point of B(xn, tn,AQ
−1/2
n );

(v) There is μ > 0 such that for every A < ∞ the following holds for all n sufficiently large, if yn ∈ B(xn, tn,AQ−1/2)

the maximum flow line through yn extends backwards for a time at least μ(max(Qn,R(yn)))
−1.

Then for a subsequence and shifting the times of each Ricci flow so that tn = 0 for every n, there is a geometric
limit (M∞, g∞, x∞) of the sequence of based Riemannian manifolds (Mn,QnGn(0), xn). The limit is a complete
3-dimensional Riemannian manifold of bounded, nonnegative curvature. Furthermore, for some t0 > 0 depending on
the curvature bound for (M∞, g∞), there is a geometric limiting Ricci flow (see Definition 5.12 in [10]) defined on
(M∞, g∞(t)),−t0 � t � 0, with g∞(0) = g∞.

Remark 2.2. We observe that in this theorem, we do not need that the time interval contains a fixed subinterval in
order to avoid shrinking to a point. However, we need condition (v) to substitute it.

We now borrow the following result from Theorem 11.8 in [10]:

Theorem 2.3. Suppose that {Mn,Gn, xn}∞n=1 is a sequence of 3-dimensional Ricci flows satisfying all the hypothesis
of Theorem 2.1. Let us assume in addition that there is T0 with 0 < T0 � ∞ such that the following holds. For any
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T < T0, for each A < ∞, and all n sufficiently large, there is an embedding B(xn, tn,AQ
−1/2
n ) × (tn − T Q−1

n , tn]
into Mn compatible with time and with the vector field and for every point of the image the flow is κ noncollapsed
on scales � r. Then, after shifting the times of the generalized flows such that tn = 0 for all n and for a subsequence
there is a geometric limiting Ricci flow(

M∞, g∞(t), x∞
)
, −T0 < t � 0,

for the rescaled flows (Mn,QnGn,xn). This limiting flow is complete with a nonnegative curvature. Furthermore, the
curvature is locally bounded in time. If in addition T0 = ∞, then it is a κ solution.

Remark 2.4. For the application of Theorem 2.3 above to our case, we need to explain a little more. In fact, we do
not need the generalized Ricci flow since we have not considered Ricci flow with surgery. Hence, the sentence “there
is an embedding B(xn, tn,AQ

−1/2
n ) × (tn − T Q−1

n , tn] into Mn compatible with time and with the vector field” in

Theorem 2.3 means that in our case, a Ricci flow defined on B(xn, tn,AQ
−1/2
n ) × (tn − T Q−1

n , tn]. We remark that
the sentence “curvature locally bounded in time” means that for any T < T0, the curvature is uniformly bounded on
the time interval (−T ,0] by a positive constant C(T ), which depends only on T .

We also need the following result on the Ricci flow (see Theorem 1 in [1]):

Theorem 2.5. Let (Mn,g) be a complete noncompact Riemannian manifold with injectivity radius bounded away
from zero such that |Rm|(x) → 0 as x → ∞. Let (M,g(t)) be the corresponding maximal solution to the Ricci
flow on M × [0, T ). Then either T = ∞ or there exists some compact S ⊂ M such that |Rm(x, t)| is bounded on
(M − S) × [0, T ).

3. Proof of Theorem 1.1

In the following, we consider the Ricci flow on a complete noncompact Riemannian manifold (M,g(0)) of di-
mension three with its curvature operator Rm > 0, |Rm(p)| → 0, as d(o,p) → ∞, where o is a fixed point. In
order to applied Theorem 2.3 above, we need two results below. The method used to prove them comes from Perel-
man’s famous papers (see [12,13]). However, the condition there is a little different from ours. For the definition of
κ-noncollapsed on the scale ρ > 0, we refer to Definition 4.2 in [12].

Lemma 3.1. For sufficiently small r > 0, there is κ > 0 such that the Ricci flow (M,g(t)), t ∈ [0, T ), on our complete
noncompact manifold (M,g(0)) is κ noncollapsed on the scale ρ � r.

Proof. Since Rm(g(0) > 0, Shi [15] has proved that the positivity of curvature operator is preserved by the Ricci flow
(M,g(t)), t ∈ (0, T ). By a well known result of Gromoll and Meyer ([5], [2] see also Theorem B65 in p. 312 in [3]
with its proof), we have an injectivity radius estimate inj(Mn,g(t)) � π/

√
Rmax(t).

Fix a point (x, t0) ∈ M × [0, T ). Since we have the bound for the scalar curvature R(y, t) < C1, (y, t) ∈ M ×
[0, 1

2 t0], by the above injectivity radius estimate, we have VolB(y, t, r) � V
′
r3, (y, t) ∈ M × [0, 1

2 t0]. where V ′ is a
positive constant, which may depends on t .

The following computation can be found in [12] (see Chapter 6 and Chapter 9 in [10] and also the interesting paper
of Ye [16]).

By the inequality of reduced length

∂lx

∂τ
(q, τ ) + 
lx(q, τ ) �

( 3
2 ) − lx(q, τ )

τ
,

we know there is a point (q̃, t̃), t̃ = 1
4 t0, such that lx(q̃, τ̃ ) � 3

2 , where τ̃ = t0 − t̃ . From the inequality (p. 197,
Theorem 9.13 in [10]), |∇lx(q, τ )|2 � |∇lx(q, τ )|2 + R(q, τ) � (1 + 2n)lx(q, τ )/τ , we have

lx(q, τ̃ ) �
(√

2n + 1dg(t0−τ̃ )(q, q̃) +
√

n
)2

,

2 2
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so, for any A < ∞, we have lx(q, τ̃ ) < C(A), when (q, t0 − τ̃ ) ∈ B(q̃, t0 − τ̃ ,A), where C(A) is a constant depend
on A.

By the above injectivity radius estimate, we have a lower bound on V (A), Volg(t0−τ̃ ) B(q̃,A) � V (A).

By Perelman’s no local collapsing theorem (p. 184, Theorem 8.1 in [10]), |Rm(p, t)| < r−2, (p, t) ∈ B(x, t0, r) ×
[t0 − r2, t0], then VolB(x, t0, r) � κrn. �
Remark 3.2. The detailed proof of Perelman’s no local collapsing theorem has been given for balls of compact Ricci
flow in Theorem 8.1 in p. 184 in [10] by using the monotonicity of reduced volume. However, one can see that
the proof does not use of compactness of the flow. Since we have the injectivity radius estimate at the start and the
reduced length is bounded on some ball, we have a low bound for the reduced volume at the start. By the monotonicity
of reduced volume, we have low bound for the reduced volume of g(t) for t ∈ (0, T ).

Lemma 3.3. Fix 0 < ε < 1, then there is a positive constant r > 0 such that for any point (x0, t0) in the flow with
R(x0, t0) � r−2, (x0, t0) has a strong canonical (C(ε), ε) neighborhood (p. 241, Definition 9.46 in [10]).

Proof. By Theorem 2.5, we have, for any t ′n < T , t ′n → T , the following curvature bound |Rm(x, t)| < C(t ′n), (x, t) ∈
M × [0, t ′n]. Set

An = {
(x, t) ∈ M × [0, t ′n] | (x, t) does not have strong canonical neighborhood

}
.

Then there is also a uniform upper bound to curvature at any point in An, having, R(x, t) < C̃(t ′n), (x, t) ∈ An.

Hence, we can pick point (xn, tn) ∈ An, such that R(xn, tn) > 1
2 C̃(t ′n), tn � t ′n. We now have to prove that

limn→∞R(xn, tn) < ∞.

By contradiction, we may assume that Qn = R(xn, tn) → ∞. By this, we know that ∀(x, t) ∈ M × [0, tn], if
R(x, t) > 4R(xn, tn), (x, t) has a canonical neighborhood. Note that our flow is a 3-dimensional Ricci flow and
the curvature is pinching toward positive (p. 251, Definition 10.1 in [10]). By Lemma 3.1, we can verify that the
assumption of noncollapsing in Theorem 2.1 is true. Since Qn → ∞, tn → T , for any fixed T0 > 0, we have (tn −
T0Q

−1
n , tn] ⊂ [0, tn] for sufficiently large n. That is, the addition assumption of Theorem 2.3 is also satisfied.

By Theorem 2.3, (M,Qng(tn + t
Qn

), (xn, tn)) converges to a limit flow (M∞, g∞(t), (x∞,0)), which is a κ so-
lution. So for sufficiently large n, (xn, tn) has a strong canonical neighborhood. This contradicts our assumption that
none of the points (xn, tn) has a strong canonical neighborhood (p. 250, Corollary 9.84 in [10]). �
Proof of Theorem 1.1. Let us assume the Ricci flow blows up at finite time T . By Theorem 2.5, we know there is a
limit metric g(T ) at infinity in the sense that g(t)|M−K → g(T )|M−K, where K is a suitable compact set of M. Since
the Ricci flow blows up at the time t = T , we have supx∈M Rm(x, t) → ∞, t → T . (Otherwise, we can extend the flow
with the curvature bounded, which contradicts the maximum of existence time.) So there is a point p ∈ K, such that the
scalar curvature blows up at T , that is, R(p, t) → ∞, t → T . Then we can pick up a sequence tn → T such that Qn =
R(p, tn) → ∞. By Lemma 3.3, the assumptions of Theorem 2.3 are satisfied. Hence, (M,Qng(tn + t

Qn
), (p, tn))

converges geometrically to a κ solution (M∞, g∞(t), (x∞,0)), where x∞ = p.
Recall that the asymptotic volume of κ solution is zero, that is,

lim
r→∞

volB(x∞, r)

r3
= 0.

Fixing any ε > 0, there is a sufficient large r such that

volB(x∞, r)

r3
� ε

2
.

Since (M,Qng(tn + t
Qn

), (p, tn)) converges to (M∞, g∞(t), (x∞,0)), for large n, we have

volBQng(tn)((p, tn), r)

r3
� ε, and then

volBg(tn)((p, tn), r/Q
1/2
n )

(r/Q
1/2
n )3

� ε.

On the other hand, there is a compact region Ω ⊂ M − K, such that g(t)|Ω → g(T )|Ω. Since R > 0, d
dt

∫
Ω

dμ =
− ∫

R dμ � 0, we have Volg(t) Ω � δ, t ∈ [0, T ].

Ω
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But Ω is compact, and we can find r̃ > 0, such that Ω ⊂ Bg(0)(p, r̃). Since Ric � 0, the distance function decreases
with respect to t . Ω ⊂ Bg(t)(p, r̃), t ∈ [0, T ), so VolBg(tn)((p, tn), r̃) � δ.

Since Qn → ∞, for sufficiently large n, r̃ > r/Q
1/2
n . We now choose ε < δ/r̃3. Using Ric � 0, and the Bishop–

Gromov volume comparison theorem, we have that

δ

r̃3
> ε >

VolBg(tn)((p, tn), r/Q
1/2
n )

(r/Q
1/2
n )3

>
VolBg(tn)((p, tn), r̃)

r̃3
� δ

r̃3
,

which is absurd. Therefore, the Ricci flow (M,g(t)) on (M,g(0)) is nonsingular at any finite time. In other words,
T = ∞. This ends the proof of Theorem 1.1. �

Finally, we make some remarks about the proof above:

Remark 3.4. In the last part of the proof above, we consider the original Ricci flow, not the geometric limit flow.

Remark 3.5. Due to the positivity of curvature operator, the volume of a compact domain is decreasing along the
Ricci flow. Since there is a low bound on volume of Ω at T , we have a low bound of the volume of Ω at any earlier
time t < T .
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