
C. R. Acad. Sci. Paris, Ser. I 347 (2009) 129–132
http://france.elsevier.com/direct/CRASS1/

Number Theory

Rank of elliptic surfaces and base change ✩

Cecilia Salgado

Institut de mathématiques de Jussieu, 175, rue du Chevaleret 75013 Paris, France

Received 2 July 2008; accepted after revision 10 December 2008

Available online 14 January 2009

Presented by Christophe Soulé

Abstract

We study the variations of the rank of fibers of an elliptic surface with minimal model over k isomorphic to P
2
k
. We show that an

infinite number of fibers have rank at least the generic rank plus two. To cite this article: C. Salgado, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Rang de surfaces elliptiques et changements de base. On étudie les variations du rang des fibres dans une surface elliptique.
On montre que si son modèle minimal est P

2
k

alors il existe une infinité de fibres avec un rang égal au moins au rang générique
augmenté de deux unités. Pour citer cet article : C. Salgado, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this Note k will be a number field. Let B be a smooth projective integral curve and π :E → B be an
elliptic surface with a section defined over k [7, Ch. 3]. We shall be interested in comparing the generic rank rkE(k(B))

(the usual Mordell–Weil theorem holds in this generality, see [7, Ch. III, Thm. 6.1]) with the Mordell–Weil rank of
the fibers Et , where t ∈ B(k).

Our object of interest are elliptic surfaces whose function field is isomorphic to k(P2) and whose minimal model
over k is isomorphic to P

2
k . Other possibilities for the minimal model of a k-rational elliptic surface are del Pezzo

surfaces of degree five or six. These cases will be treated by the author in her Ph.D. thesis.

Theorem 1.1. Let E → B be a k-rational elliptic surface with minimal model isomorphic to P
2
k . Then there exists a

finite and dominant morphism C → B where C is a curve of genus � 1 such that C(k) is infinite and the base changed
elliptic surface E ×B C → C satisfies:

rk(E ×B C)
(
k(C)

)
� rkE

(
k(B)

) + 2.
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Since the curve in the theorem has infinitely many rational points we have the immediate consequence after apply-
ing a theorem of Silverman on specializations [8].

Corollary 1.2. Let E be as in the theorem. There exists infinitely many points t ∈ B(k) such that

rkEt(k) � rkE
(
k(B)

) + 2.

Remark 1. Corollary 1.2 generalizes in several ways Theorem C of [1]; the lower bound is larger and the proof is
valid over any number field.

Remark 2. The class of k-rational elliptic surfaces with minimal model P
2
k is actually very big. Namely all rational

surfaces obtained by blowing up the base locus of {tF + uG; [t, u] ∈ P
1} where F (smooth) and G are homogeneous

cubic polynomials in k[x, y, z]. Also one can show that all the k-rational elliptic surfaces with bad fibers of type II∗
or III∗ are in this class. For a list of possible bad fibers see [4, I.4.1].

1.1. New and old sections

Let π :E → B an elliptic surface (not necessarily rational). Given an integral curve ι :C′ ↪→ E which is not con-
tained in a fiber of π , if ν :C → C′ is its normalization we obtain a new elliptic surface πC : EC := E ×B C → C

via the morphism f = π ◦ ι ◦ ν : C → B . Each section σ :B → E induces naturally a section (σ, id) : C =
B ×B C → E ×B C. These will be called old sections. The elliptic surface EC inherits a new section given by
σ new

C = (ι ◦ ν, id) :C → E ×B C.
If C′ is not contained in a fiber of π and is not a section of π then the new section is clearly different from any old

section induced in the base changed surface, but may be Z-dependent.
The idea—which can be traced back to Néron [5]—behind our proof of Theorem 1.1 is to construct a curve C′ ↪→ E

such that the new section will be responsible for the augmentation of the rank.

1.2. Notation

The set of sections σ :B → E of the structural morphism π :E → B is denoted by Sec(π), it carries a natural
group structure [7, Ch. III, 3.10] essentially because it is isomorphic to the Mordell–Weil group of the generic fiber
E(k(B)). The multiplication by n is defined only on an open subset of E but this enables us to define the image or
pull-back of a curve.

The division of the text is the following. The proof of the theorem is contained in Sections 2 and 4. In Section 2
we prove that given an algebraic family of curves that are not sections nor fibers then all but a finite number of them
induce a new independent section. Section 3 gives a geometric description of rational elliptic surfaces that will help
us to construct, in Section 4, pencils of curves with the requested properties finishing the proof of the theorem.

2. A key proposition

The main technical tool we will apply to prove the theorem is the following general proposition:

Proposition 2.1. Let π :E → P
1
k be an elliptic surface. Let L = {Lu: u ∈ P

1} be a non-constant pencil of curves in E

whose generic member is irreducible and neither a section nor a fibre of π . Then, for almost all u ∈ P
1(k), the new

section σ new
Lu

is Z-independent of the old sections.

The most useful criterion to evaluate the independence of a new section from old ones is the following:

Lemma 2.2. Let C ↪→ E be an irreducible curve in E which is not a component of a fibre of π . Then the new section
σ new

C induced by C is independent of the old sections if and only if for every section Σ ↪→ E and for every n ∈ N, the

curve C is not a component of [n]−1(Σ).
E
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Let us give some indications of how Lemma 2.2 can be used to prove Proposition 2.1. Using Kummer’s the-
ory for elliptic curves [2], we can show that there exists an n0 ∈ N such that if Lt is not a component of⋃

Σ∈Sec(π), n�n0
[n]−1

E Σ , then Lt produces a new section which is independent of the old ones. From the theory
of Néron–Tate heights [3,6], it is possible to make further restrictions: there exists a finite set of sections S ⊂ Sec(π)

such that if Lt is not a component of
⋃

Σ∈S, n�n0
[n]−1

E Σ , then Lt is not a section. Of course, the set of irreducible
curves in the above scheme is finite and this is enough to prove the proposition.

3. Cubic pencils for rational elliptic surfaces

Let F and G be homogeneous cubic polynomials in three variables such that F and G are coprime. Assume
that V (F) ⊂ P

2
k is smooth. The pencil P = {V (tF + uG) ⊂ P

2
k; (t : u) ∈ P

1} has nine base points (counted with
multiplicity) and the blow-up of P

2
k at these base points defines a smooth rational elliptic surface π : EP → P

1. In fact
this surface is birational to the following (possibly singular) surface,

E′
P = {[

(x : y : z); (t : u)
] ∈ P

2 × P
1: tF (x, y, z) + uG(x, y, z) = 0

}

and π is just the composition of the inclusion with the projection P
2 × P

1 → P
1.

Proposition 3.1. ([4, Lecture 4].) Over an algebraically closed field, any smooth rational elliptic surface with a
section is isomorphic to some EP . The choice of P is non-canonical.

Over a number field this is valid in general only after a base extension. In the case treated here this is also valid
over k since the minimal model over k is P

2
k .

4. Construction of the base change envisaged in Theorem 1.1

Let π :E → P
1
k be a k-rational elliptic surface as in Theorem 1.1. From Section 3 we obtain a pencil P such that

E is an elliptic surface isomorphic to EP . We will need two base points to perform the base changes. The following
lemma tells us when this condition is satisfied:

Lemma 4.1. If E has no fiber of type II∗ then the pencil P has at least two distinct base points.

The proof of this lemma is achieved through case-by-case considerations.
If E has a fiber of type II∗ its generic rank is zero; a quadratic base change ramified over v such that the fiber

π−1(v) is the II∗-fiber and ramified at another point v′ such that π−1(v′) is a smooth fiber is still a rational elliptic
surface E ′ → B ′ � P

1 for if e(V ) is the Euler characteristic of a variety V then since all the singular fibers different
from II∗ occur twice in the base change 12(pg(E ′) + 1) = 8 + 2

∑
v 	=t∈P1 e(π−1(t)) = 12. Note that the terms in

the summation are non-zero only at the singular fibers. The only reducible fiber of the base changed surface is of
type IV∗. One can perform this base change such that rk(E ′(k(B ′))) � rk(E (k(B))) + 1. Then one can construct a
family of rational curves, on its minimal model, defined over k. Applying Proposition 2.1 one has a base changed
surface E ′′ → B ′′ such that rk(E ′′(k(B ′′))) � rk(E ′(k(B ′)) + 1 � rk(E (k(B))) + 2.

We will now treat the main case, i.e. when there are at least two distinct base points.
Let q :E → P

2 denote the blow-up of P
2 at the nine base points of the pencil P . The curve C in the statement of

the theorem will be of the form C1 ×B C2, where:

(i) Each Ci is the normalization of the strict transform of a rational curve in P
2 passing through some of the base

points of the pencil P .
(ii) If ιj denotes the closed embedding of Cj into E, then deg(π ◦ ιj ) = 2. (This will guarantee that C1 ×B C2 has

genus � 1.)
(iii) The new sections σi := σ new

Ci
: Ci → E ×B Ci are linearly independent from the old sections.

In general only one base point is k-rational, nevertheless for simplicity we will give the proof when there are two
k-rational base points and point out at the end the necessary modifications to carry out the general proof.
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Let L1 = {L1
u: u ∈ P

1} and L2 = {L2
u: u ∈ P

1} be two pencils of lines through P1 and P2 respectively. The
strict transform of Li

u in E (by q) will be denoted by Mi
u. Let π(t,1) : E(t,1) → M1

t denote the elliptic surface
obtained from E by base-changing via M1

t → B . Proposition 2.1 shows that for all t ∈ P
1(k) outside a finite set

Φ1 ⊂ P
1(k), the section σ new

M1
t

:M1
t → E(t,1) is independent of the old sections. Let N2

s denote the pre-image of M2
s

in E(t,1). By another application of Proposition 2.1, we obtain that for all s ∈ P
1(k) outside a finite set Φ2 ⊂ P

1(k),
the new section σ new

N2
s

:N2
s → E(t,1) ×M1

t
N2

s will be independent of the old ones. Therefore, by taking (u, s) ∈
P

1(k) × P
1(k)\(Φ1 × P

1(k) ∪ P
1(k) × Φ2) we have constructed two new independent sections.

Finally, to show that infinitely many of the curves C = M1
u ×B M2

s are curves with the properties envisaged by
Theorem 1.1 we have to prove that for an infinite set of u, s ∈ P

1(k) card(C(k)) = ∞. For that, let us fix s ∈ P
1 and

consider Q(u) the point in the intersection of L1
u and L2

s . For each u there is a unique cubic Γt(u) = t (u)F + G of the
pencil P that passes through Q(u). This cubic intersects each Li in three points: Γt(u) ∩ Li = {Pi,Q(u),Ri(u)}. Let
Q′(u),R′

i (u) be the corresponding points in Mi . The four points (Q′(u),Q′(u)), (R′
1(u),Q′(u)), (Q′(u),R′

2(u)) and
(R′

1(u),R′
2(u)) are k(u)-rational and lie in the fiber product M1

u ×B M2
s for fixed s since π(Q′(u)) = t (u) = π(Ri(u)).

Let u0 be such that L1 is tangent to Γt(u0) (Q(u),R2(u)) and (R1(u),R2(u)) intersect the (one can check that it is
non-singular) point (Q(u0),R2(u0)). Since torsion sections do not intersect each other in a non-singular point, one
of the two sections has infinite order. This elliptic surface has rank at least one thus by Silverman’s specialization
theorem [8] almost all fibers have rank at least one.

The case of non-trivial Galois action: In the general case we have one k-rational base point and various Galois
orbits. We apply the same procedure but instead of taking pencils of lines through one point, we take more general
pencils of rational curves. For example if we have two Galois orbits given by O1 = {P1} and O2 = {P2,P3,P4}. We
take L1 the pencil of lines through P1 and L2 the pencil of conics through P1,P2,P3,P4. The generic member of L2
is defined over k. The rest of the proof goes exactly the same way as for the simpler case since for each curve L′

2,u in
the pencil of strict transforms L2 the degree of the morphism φ2,u :L′

2,u → B is also two.
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