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Abstract

The water-wave problem with a one-dimensional free surface of infinite depth is considered, based on the formulation as a
second-order nonlinear dispersive equation. The local smoothing effects are established under the influence of surface tension,
stating that on average in time solutions acquire locally 1/4 derivative of smoothness as compared to the initial state. The analysis
combines energy methods with techniques of Fourier integral operators. To cite this article: H. Christianson et al., C. R. Acad.
Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Effets de lissage locaux pour le problème des ondes avec tension superficielle. Nous considérons le problème des ondes avec
une surface libre unidimensionnelle, de profondeur infinie, en utilisant sa formulation comme une équation non linéaire dispersive
du second ordre. Nous mettons en évidence un effet de lissage local sous l’influence de la tension superficielle : en moyenne au
fil du temps, les solutions acquièrent localement 1/4 de dérivée en plus de la régularité de l’état initial. L’analyse combine des
méthodes d’énergie avec des techniques d’opérateurs Fourier intégraux. Pour citer cet article : H. Christianson et al., C. R. Acad.
Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The water-wave problem in its simplest form concerns the two-dimensional dynamics of an incompressible inviscid
liquid of infinite depth and the wave motion on its one-dimensional surface layer, under the influence of gravity and
surface tension. The moving interface is given as a nonself-intersecting parametrized curve. The liquid occupies the
domain below the interface, where the liquid motion is described by the Euler equations under gravity. The flow
beneath the interface is required to be irrotational. The kinematic and dynamic boundary conditions hold at the moving
interface, stating respectively that the normal component of velocity is continuous along the interface and that the jump
in pressure across the interface is proportional to its mean curvature. The flow is assumed to be almost at rest at great
depths, and the interface is taken to be asymptotically flat.
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Provided with the initial wave profile and the initial state of fluid current, the water-wave problem naturally poses as
an initial value problem. Early mathematical results for its local well-posedness date back to [16,17] and they include
[7,10,23,24]. Following the works by Wu [21,22] in recent years there has been considerable progress in the study of
local well-posedness for, more generally, a class of the Euler equations with free boundary; we refer to [1,2,4,6,14,
15,18], and references therein. This progress is a consequence of the development of several different approaches to
obtaining high energy expressions in the nonlinear problem and showing local existence by establishing bounds for
these expressions. While the so-called energy method successfully yields local well-posedness, nonetheless it does
not provide any further information about solutions, other than that they remain as smooth as their initial states.

On the other hand, the dispersion relation of the water-wave problem

c(k) =
(

S

2
|k| + g

|k|
)1/2

k

|k| (1)

provides a useful guiding principle in the linear dynamics. Here, c(k) is the speed of the simple harmonic oscillation
with the wave length 2π/k; S � 0 is the coefficient of surface tension and g � 0 is the gravitational constant of
acceleration. Indeed, in the presence of the effects of surface tension, i.e. S > 0, the formula suggests a “regularizing”
effect by the process of broadening out the wave profile. The dispersive property of gravity waves, i.e. S = 0 and g > 0,
in contrast does not induce a regularizing effect. Taking this further, one can prove the local smoothing effect for the
linear water-wave problem with surface tension (see (5) below). A natural question then is whether the nonlinear
problem will inherit from the linear one a similar smoothing effect, which is the subject of investigation here.

2. The main result

Our treatment of the water-wave problem (with surface tension) is based on the formulation of the problem as a
second-order in time nonlinear dispersive equation as

∂2
t u − S

2
H∂3

αu + gH∂αu = −2u∂t∂αu − u2∂2
αu + R(u, ∂tu). (2)

Here, u is related to the tangential velocity at the interface; t ∈ R+ is the temporal variable and α ∈ R is the arclength
parametrization of the interface, which serves as the spatial variable; ∂ means partial differentiation. The Hilbert
transform H may be defined via the Fourier transform as Ĥf (ξ) = −i sgn(ξ)f̂ (ξ). The remainder R is of lower order
compared to 2u∂t∂αu and u2∂2

αu in the sense that∥∥R(u, ∂tu)
∥∥

Hs � C
(‖u‖Hs+1,‖∂tu‖Hs

)
for s � 1. Here and elsewhere, Hs means the Sobolev space of order s in the variable α ∈ R.

One obvious advantage of (2) is that its dispersive character is more pronounced. Indeed, the left side of (2) has
symbol −τ 2 + S

2 |ξ |3 + g|ξ |, where τ and ξ are the Fourier variables corresponding to t and α, respectively. Another
more subtle advantage is that it suggests a natural expression for nonlinear energy.

Our main result concerns a local smoothing effect for the water-wave problem with surface tension.

Theorem. Let S > 0 and g � 0 be held fixed. For s > 2+1/2 the initial value problem of (2) with the initial conditions
u(0, α) = u0(α) and ∂tu(0, α) = u1(α), where (u0, u1) ∈ Hs(R) × Hs−3/2(R), is locally well-posed on the interval
t ∈ [0, T0] for some T0 > 0 and (u(t), ∂tu(t)) ∈ C([0, T ];Hs(R) × Hs−3/2(R)).

Moreover, if s � s0 > 1 is sufficiently large, then for 0 < T < T0 sufficiently small, the inequality

T∫
0

∞∫
−∞

∣∣〈α〉−ρDs+1/4
α u(t, α)

∣∣2 dα dt � C (3)

holds, where ρ � 3 and C > 0 depends only on T and the Sobolev norms of the initial data. Here, 〈α〉 = (1 + α2)1/2

is to describe the weighted Sobolev spaces and Dα = −i∂α .

Kato in [11] first deduced a local smoothing result for the Korteweg–de Vries equation. The local smoothing
effect of the kind in (3) is a common property of a general class of dispersive equations. It has been studied perhaps
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most extensively for the Schrödinger equation in the constant-coefficient setting [5,19,20] as well as in the variable-
coefficient setting [3,8,9,13], to mention only a few of the results.

3. Ideas of the proof

Our proof of (3) is motivated by the local smoothing effect for the linear dispersive part of (2). It is standard by
techniques of oscillatory integrals ([12], for instance) to show that when S > 0 the solution to the initial value problem
of the linear homogeneous equation

∂2
t u − S

2
H∂3

αu + gH∂αu = 0, u(0, α) = u0(α) and ∂tu(0, α) = u1(α) (4)

possesses the local smoothing estimate

sup
α∈R

( ∞∫
−∞

∣∣D1/4
α u(t, α)

∣∣2 dt

)1/2

� C
(‖u0‖L2

α(R) + ‖u1‖H
−3/2
α (R)

)
. (5)

Moreover, the solution to the corresponding inhomogeneous problem

∂2
t v − S

2
H∂3

αv + gH∂αv = R(t,α), v(0, α) = 0 = ∂tv(0, α)

exhibits the estimate

sup
α∈R

( ∞∫
−∞

∣∣D2
αv(t, α)

∣∣2 dt

)1/2

� C

∞∫
−∞

( ∞∫
−∞

∣∣R(t,α)
∣∣2 dt

)1/2

dα.

The main difficulty of the proof is that the smoothing effect of the linear part of (2) is too weak to control the
nonlinearity. In the application to our setting in (2), the above results say that the smoothing effect of the linear part
of (2) can treat up to 2 derivatives in the inhomogeneous nonlinear terms. However, the worst nonlinear term u∂t∂αu

in (2) contains 2 + 1/2 derivatives (∂t is comparable to ∂
3/2
α ). In other words, the water-wave problem under surface

tension is strongly nonlinear but only weakly dispersive.
To overcome this difficulty, we view (2) as

∂2
t u − S

2
H∂3

αu + gH∂αu + 2u∂t∂αu + u2∂2
αu = R(u, ∂tu).

That means, we view 2u∂t∂αu and u2∂2
αu as “linear” components of the equation, but with variable coefficients which

happen to depend on the solution itself. In effect, we reduce the size of nonlinearity at the expense of making the linear
part more complicated. We then make a serious effort to establish the local smoothing effect for, more generally, the
variable-coefficient linear equation

∂2
t u − S

2
H∂3

αu + gH∂αu + 2V (t,α)∂α∂tu + V 2(t, α)∂2
αu = R(t,α). (6)

Our approach to establishing the local smoothing effect for (6) is based on the construction of an approximate
solution (“parametrix”). For the sake of exposition, we present the sketch of the proof for the homogeneous equation
(R = 0) and for the initial data u(0, α) = u0(α) and ∂tu(0, α) = u1(α) localized in high frequencies.

The ansatz is

w(t,α) = 1

2π

∫ ∫
e−iβξ

(
eiϕ+(t,α,ξ)f +(β) + eiϕ−(t,α,ξ)f −(β)

)
dβ dξ,

where the phase functions ϕ satisfy ϕ±(0, α, ξ) = αξ .
Applying the homogeneous equation of (6) to our ansatz, we obtain a non-linear equation for ϕ±, commonly

referred to as the Hamilton–Jacobi equation. The usual way to solving the Hamilton–Jacobi equation is through
the technique of generating functions. The equation is, however, neither homogeneous nor polyhomogeneous, and
as such solutions are on a time scale t ∼ |ξ |1/2. We thus construct the parametrix for |ξ | ∼ 2j and t ∼ 2−j/2 with
ϕ±(t, α, ξ) = αξ + t (±|ξ |3/2 + ϑ±(t, α, ξ)), where ϑ±(0, α, ξ) behave like classical symbols.
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The oscillatory integral ansatz w satisfies the local smoothing estimate (3) for short (frequency-localized) time
scale. The proof uses the change of variables and L2-mapping properties of Fourier integral operators, analogous
to the standard proof for (5). The error arising in approximating by w is, on the frequency localized time scale
t ∼ 2−j/2, of the order |ξ |1, and hence it is controlled by ‖u0‖H 1

α
+ ‖u1‖L

−1/2
α

. This |ξ |1-order error, incidentally, is
of an oscillatory-integral form with the same phase functions as those of w, and thus it enjoys a 1/4 derivative gain of
smoothness. In consequence, the error in approximating by w0 is controlled by ‖u0‖H

3/4
α

+ ‖u1‖H
−3/4
α

.

In order to construct the parametrix on a fixed time scale, we “glue” together roughly 2j/2 parametrices in each
dyadic frequency band. The gluing procedure requires fine control over propagation of singularities for short time
scales. It remains to show that the “glued” parametrix is a good approximation to the actual solution u to (6). For this,
we combine the energy estimate for the linear problem (6) with the improved error estimate to show that∥∥〈α〉−ρ(u − w)

∥∥
L2

t ([0,T ])Hs+3/2
α (R)

� C
(‖u0‖H

s+5/4
α (R)

+ ‖u1‖H
s−1/4
α (R)

)
.

By virtue of the smoothing estimate (3) for w, in all, it follows that∥∥〈α〉−ρu
∥∥

L2
t ([0,T ])Hs+3/2

α (R)
�

∥∥〈α〉−ρ(u − w)
∥∥

L2
t ([0,T ])H 3/2

α (R)
+ ∥∥〈α〉−ρw

∥∥
L2

t ([0,T ])Hs+3/2(R)

� C
(‖u0‖H

s+5/4
α (R)

+ ‖u1‖H
s−1/4
α (R)

)
.

This asserts (3) for the linearized problem (6).
To prove (3) for the nonlinear problem, we employ a nonlinear energy estimate for (2) to establish its local well-

posedness for sufficiently regular initial data. Substituting the coefficient in (6) by the solution then completes the
proof.

References

[1] D.M. Ambrose, N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58 (2005) 1287–1315.
[2] D.M. Ambrose, N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana U. Math. J. (2008), in press.
[3] H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315 (1999) 529–567.
[4] D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (2000) 1536–1602.
[5] P. Constantin, J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988) 413–439.
[6] D. Coutand, S. Shkoller, Well posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math.

Soc. 20 (2007) 823–930.
[7] W. Craig, An existence theory for water waves and the Boussinesq ad Korteweg–de Vries scaling limits, Comm. Partial Differential Equa-

tions 10 (1985) 787–1003.
[8] W. Craig, T. Kappeler, W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995) 769–

860.
[9] S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J. 82 (1996) 679–706.

[10] T. Kano, T. Nishida, Sur des ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde,
J. Math. Kyoto Univ. 19 (1979) 335–370.

[11] T. Kato, On the Cauchy problem for the (generalized) Korteweg–de Vries equation, in: Studies in Applied Mathematics, vol. 8, Academic
Press, 1983, pp. 93–128.

[12] C.E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991) 33–69.
[13] C.E. Kenig, G. Ponce, L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent.

Math. 134 (1998) 489–545.
[14] D. Lannes, Well-posedness of the water-wave equations, J. Amer. Math. Soc. 18 (2005) 605–654.
[15] H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math. 162 (2005) 109–194.
[16] V.I. Nalimov, The Cauchy–Poisson problem, Dinamika Splošn. Sredy Vyp. Dinamika Zidkost. so Svobod. Granicami 18 (1974) 104–210,

254.
[17] L.V. Ovsiannikov, Non local Cauchy problems in fluid dynamics, in: Actes du Congrès International des mathématiciens, Gauthier-Villars,

1971, pp. 137–142.
[18] J. Shatah, C. Zeng, Local well-posedness for the fluid interface problems, 2008, preprint.
[19] P. Sjölin, Regularity of solutions to the Schrodinger equation, Duke Math. J. 55 (1987) 699–715.
[20] L. Vega, The Schrödinger equation: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1998) 874–878.
[21] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997) 39–72.
[22] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999) 445–495.
[23] H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982) 49–96.
[24] H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ. 23 (1983) 649–694.


	Local smoothing effects for the water-wave problem  with surface tension
	Introduction
	The main result
	Ideas of the proof
	References


