Group Theory

Staggered sheaves on partial flag varieties

Pramod N. Achar ${ }^{1}$, Daniel S. Sage ${ }^{2}$
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Received 11 December 2007; accepted after revision 23 December 2008
Available online 5 February 2009
Presented by Pierre Deligne

Abstract

Staggered t-structures are a class of t-structures on derived categories of equivariant coherent sheaves. In this Note, we show that the derived category of coherent sheaves on a partial flag variety, equivariant for a Borel subgroup, admits a staggered t-structure with the property that all objects in its heart have finite length. As a consequence, we obtain a basis for its equivariant K-theory consisting of simple staggered sheaves. To cite this article: P.N. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Faisceaux échelonnés sur les variétés de drapeaux partiels. Les t-structures échelonnées sont certaines t-structures sur des catégories dérivées des faisceaux cohérents équivariants. Nous montrons ici que la catégorie dérivée des faisceaux cohérents sur une variété de drapeaux partiels, équivariants sous un sous-groupe de Borel, admet une t-structure échelonnée telle que tout objet de son cœur soit de longueur finie. Par conséquent, l'ensemble des faisceaux échelonnés simples constitue une base pour sa K-théorie équivariante. Pour citer cet article : P.N. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let X be a variety over an algebraically closed field, and let G be a linear algebraic group acting on X with finitely many orbits. Let $\mathfrak{C o h}{ }^{G}(X)$ be the category of G-equivariant coherent sheaves on X, and let $\mathcal{D}^{G}(X)$ denote its bounded derived category. Assume that $\mathfrak{C o h}^{G}(X)$ has enough locally free objects. Staggered sheaves, introduced in [1], are the objects in the heart of a certain t-structure on $\mathcal{D}^{G}(X)$, generalizing the perverse coherent t-structure [2]. The definition of this t-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of a Serre-Grothendieck dualizing complex $\omega_{X} \in \mathcal{D}^{G}(X)$ [4]; and (3) a perversity, which is an integer-valued function on the set of G-orbits, subject to certain constraints. When the perversity is "strictly monotone and comonotone," the category of staggered sheaves is particularly nice: every object has finite length, and every simple object arises by applying an intermediate-extension ("IC") functor to an irreducible vector bundle on a G-orbit.

An s-structure on X is a certain kind of increasing filtration of $\mathfrak{C o h}^{G}(X)$ by Serre subcategories $\left\{\mathfrak{C o h}^{G}(X)_{\leqslant n}\right\}_{n \in \mathbb{Z}}$, subject to various axioms (see Section 1). Philosophically, an s-structure plays a role analogous to that of weight

[^0]filtrations in the theory of mixed constructible sheaves. Given an s-structure, let $\mathfrak{C o h}^{G}(X)_{\geqslant n} \subset \mathfrak{C o h}^{G}(X)$ denote the right-orthogonal to $\mathfrak{C o h}^{G}(X)_{\leqslant n-1}$. The staggered codimension of an orbit closure $i_{C}: \bar{C} \rightarrow X$, denoted scod \bar{C}, is defined to be codim $\bar{C}+n$, where n is the unique integer such that $\left.i_{C}^{!} \omega_{X}\right|_{C} \in \mathcal{D}^{G}(C)$ is a shift of an object in $\mathfrak{C o h}^{G}(C)_{\leqslant n} \cap \mathfrak{C o h}^{G}(C)_{\geqslant n}$. (Staggered codimensions are, in general, sensitive to the choice of ω_{X}. In this paper, whenever X is smooth, ω_{X} will denote the canonical bundle of X.) Strictly monotone and comonotone perversities exist if and only if $\operatorname{scod} \bar{D} \geqslant \operatorname{scod} \bar{C}+2$ whenever $\bar{D} \subsetneq \bar{C}$. (If this holds, one may take $\left\lfloor\frac{1}{2} \operatorname{scod} \bar{C}\right\rfloor$ as the perversity.)

The goal of this Note is to establish the existence of strictly monotone and comonotone perversities for suitable s-structures on partial flag varieties. As a consequence, we obtain a basis for the equivariant K-theory $K^{B}(G / P)$ consisting of simple staggered sheaves.

1. A gluing theorem for s-structures

If X happens to be a G-homogeneous space (i.e., of the form $X=G / H$ for some closed subgroup $H \subset G$), the axioms for an s-structure are equivalent to the following: (1) If $\mathcal{F} \in \mathfrak{C o h}^{G}(X)_{\leqslant n}$ and $\mathcal{G} \in \mathfrak{C o h}^{G}(X)_{\leqslant m}$, then $\mathcal{F} \otimes \mathcal{G} \in \mathfrak{C o h}^{G}(X)_{\leqslant n+m}$. (2) Each $\mathfrak{C o h}^{G}(X)_{\geqslant n}$ is a Serre subcategory of $\mathfrak{C o h}^{G}(X)$. (3) If $\mathcal{F} \in \mathfrak{C o h}^{G}(X)_{\geqslant n}$ and $\mathcal{G} \in$ $\mathfrak{C o h}^{G}(X)_{\geqslant m}$, then $\mathcal{F} \otimes \mathcal{G} \in \mathfrak{C o h}^{G}(X)_{\geqslant n+m}$. If X consists of many G-orbits, the last two axioms must be replaced by a collection of "local" conditions on all G-stable closed subschemes (see [1] for details), and specifying an s-structure on X directly can become quite arduous. The following "gluing theorem" lets us instead specify an s-structure on X by specifying one on each G-orbit:

Theorem 1.1. For each orbit $C \subset X$, let $\mathcal{I}_{C} \subset \mathcal{O}_{X}$ denote the ideal sheaf corresponding to the closed subscheme $i_{C}: \bar{C} \hookrightarrow X$. Suppose each orbit C is endowed with an s-structure, and that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C)_{\leqslant-1}$. There is a unique s-structure on X whose restriction to each orbit is the given s-structure.

Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in$ $\mathfrak{C o h}^{G}(C)_{\leqslant-1}$ is replaced by the following two assumptions: (F1) For each orbit $C,\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C) \leqslant 0$. (F2) Each $\mathcal{F} \in \mathfrak{C o h}^{G}(C)_{\leqslant w}$ admits an extension $\mathcal{F}_{1} \in \mathfrak{C o h}^{G}(\bar{C})$ whose restriction to any smaller orbit $C^{\prime} \subset \bar{C}$ is in $\mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leqslant w}$. Condition (F1) is trivially implied by the stronger assumption that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C)_{\leqslant-1}$. It suffices, then, to show that (F2) is implied by it as well. Given $\mathcal{F} \in \mathfrak{C o h}^{G}(C) \leqslant w$, let $\mathcal{G} \in \mathfrak{C o h}^{G}(\bar{C})$ be some sheaf such that $\left.\mathcal{G}\right|_{C} \simeq \mathcal{F}$. Let $C^{\prime} \subset \bar{C} \backslash C$ be a maximal orbit (with respect to the closure partial order) such that $\left.i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \notin \mathfrak{C} \mathfrak{C h}^{G}\left(C^{\prime}\right) \leqslant w$. (If there is no such C^{\prime}, then \mathcal{G} is the desired extension of \mathcal{F}, and there is nothing to prove.) Let $v \in \mathbb{Z}$ be such that $\left.i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \in \operatorname{Coh}^{G}\left(C^{\prime}\right)_{\leqslant v}$. By assumption, we have $v>w$. Let $\mathcal{G}^{\prime}=\mathcal{G} \otimes \mathcal{I}_{C^{\prime}}^{\otimes v-w}$. Since $\left.\mathcal{I}_{C^{\prime}}\right|_{X \backslash \bar{C}^{\prime}}$ is isomorphic to the structure sheaf of $X \backslash \bar{C}^{\prime}$, we see that $\left.\left.\mathcal{G}^{\prime}\right|_{\bar{C} \backslash \bar{C}^{\prime}} \simeq \mathcal{G}\right|_{\bar{C} \backslash \bar{C}^{\prime}}$. On the other hand, according to axiom (1) above, the fact that $\left.i_{C^{\prime}}^{*} \mathcal{I}_{C^{\prime}}\right|_{C^{\prime}} \in \operatorname{Coh}^{G}\left(C^{\prime}\right)_{\leqslant-1}$ implies that $\left.\left.i_{C^{\prime}}^{*} \mathcal{G}^{\prime}\right|_{C^{\prime}} \simeq i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \otimes\left(\left.i_{C^{\prime}}^{*} \mathcal{I}_{C^{\prime}}\right|_{C^{\prime}}\right)^{\otimes v-w} \in \mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leqslant w}$. Thus, \mathcal{G}^{\prime} is a new extension of \mathcal{F} such that the number of orbits in $\bar{C} \backslash C$ where (F2) fails is fewer than for \mathcal{G}. Since the total number of orbits is finite, this construction can be repeated until an extension \mathcal{F}_{1} satisfying (F2) is obtained.

2. s-structures on Bruhat cells

Let G be a reductive algebraic group over an algebraically closed field, and let $T \subset B \subset P$ be a maximal torus, a Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P containing T. The Lie algebras of G, P, and B are denoted $\mathfrak{g}, \mathfrak{b}$, and \mathfrak{p}.

Let W be the Weyl group of G (with respect to T), and let Φ be its root system. Let Φ^{+}be the set of positive roots corresponding to B. Let $W_{L} \subset W$ and $\Phi_{L} \subset \Phi$ be the Weyl group and root system of L, and let $\Phi_{P}=\Phi_{L} \cup \Phi^{+}$. Let $W^{L} \subset W$ be the set of minimal-length right coset representatives for W_{L}. For each $w \in W^{L}$, we fix once and for all a representative in G, also denoted w. We put $B_{w}=w B w^{-1}$ and $P_{w}=w P w^{-1}$, and we write \mathfrak{b}_{w} and \mathfrak{p}_{w} for their Lie algebras. Let X_{w}° denote the Bruhat cell $B w P / P$, let X_{w} denote its closure (a Schubert variety), and let $i_{w}: X_{w} \rightarrow G / P$ be the inclusion. Let \mathcal{I}_{w} denote the ideal sheaf on G / P corresponding to X_{w}.

Let Λ denote the weight lattice of T, and let $\rho=\frac{1}{2} \sum \Phi^{+}$. (For a set $\Psi \subset \Phi$, we write " $\sum \Psi$ " for $\sum_{\alpha \in \Psi} \alpha$.) For any $w \in W$, we define various subsets of Φ^{+}and elements of Λ as follows:

$$
\begin{aligned}
& \Pi(w)=\Phi^{+} \cap w\left(\Phi^{+}\right), \quad \pi(w)=\sum \Pi(w), \quad \Pi_{L}(w)=\Phi^{+} \cap w\left(\Phi^{+} \backslash \Phi_{L}\right), \quad \pi_{L}(w)=\sum \Pi_{L}(w), \\
& \Theta(w)=\Phi^{+} \cap w\left(\Phi^{-}\right), \quad \theta(w)=\sum \Theta(w), \quad \Theta_{L}(w)=\Phi^{+} \cap w\left(\Phi^{-} \backslash \Phi_{L}\right), \quad \theta_{L}(w)=\sum \Theta_{L}(w) .
\end{aligned}
$$

Let $\langle\cdot, \cdot\rangle$ denote a W-invariant positive-definite bilinear form on Λ such that $\langle 2 \rho, \lambda\rangle \in \mathbb{Z}$ for all $\lambda \in \Lambda$. Now, for $w \in W^{L}$, the category $\mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)$ is equivalent to the category $\mathfrak{R e p}\left(B_{w} \cap B\right)$ of representations of the isotropy group $P_{w} \cap B=B_{w} \cap B$. We define an s-structure on X_{w}° via this equivalence as follows: $\mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{\leqslant n} \simeq\{V \in$ $\mathfrak{R e p}\left(B_{w} \cap B\right) \mid\langle\lambda,-2 w \rho\rangle \leqslant n$ for all weights λ occurring in $\left.V\right\}$. It follows that $\mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{\geqslant n} \simeq\left\{V \in \mathfrak{R e p}\left(B_{w} \cap B\right) \mid\right.$ $\langle\lambda,-2 w \rho\rangle \geqslant n$ for all weights λ occurring in $V\}$. Below, we regard $\omega_{X_{w}^{\circ}}$ and $i_{w}^{*} \mathcal{I}_{w}$ as objects of $\mathfrak{R e p}\left(B_{w} \cap B\right)$:

Lemma 2.1. The T-weight on $\omega_{X_{w}^{\circ}}$ is $-\theta_{L}(w)$, and the set of T-weights on $i_{w}^{*} \mathcal{I}_{w}$ is $\Pi_{L}(w)$.
Proof. For any weight $\psi \in \Lambda$, let V_{ψ} denote the 1-dimensional T-representation of weight ψ, and for any subset $\Psi \subset \Lambda$, let $V(\Psi)=\bigoplus_{\psi \in \Psi} V_{\psi}$. The tangent space to G / P at the point $w P / P$ is $\mathfrak{g} / \mathfrak{p}_{w}$. As a T-representation, this is isomorphic to $V\left(w\left(\Phi \backslash \Phi_{P}\right)\right) \simeq V\left(w\left(\Phi^{-} \backslash \Phi_{L}\right)\right)$. The tangent space to the B-orbit through that point is the subspace $\mathfrak{b} / \mathfrak{b} \cap \mathfrak{p}_{w} \simeq V\left(\Phi^{+} \cap w\left(\Phi^{-} \backslash \Phi_{L}\right)\right) \simeq V\left(\Theta_{L}(w)\right)$, and the normal space is the quotient $\mathfrak{g} /\left(\mathfrak{b}+\mathfrak{p}_{w}\right) \simeq$ $V\left(\Phi^{-} \cap w\left(\Phi^{-} \backslash \Phi_{L}\right)\right) \simeq V\left(-\Pi_{L}(w)\right)$. Since the canonical bundle $\omega_{X_{w}^{\circ}}$ is the top exterior power of the cotangent bundle, and $i_{w}^{*} \mathcal{I}_{w}$ is the conormal bundle, the result follows.

Since $\langle\alpha,-2 w \rho\rangle=\left\langle w^{-1} \alpha,-2 \rho\right\rangle<0$ for all $\alpha \in \Pi_{L}(w)$, we see from Lemma 2.1 that $\left.i_{w}^{*} \mathcal{I}_{w}\right|_{X_{w}^{\circ}} \in \mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{\leqslant-1}$, and then Theorem 1.1 gives us an s-structure on G / P. Separately, Lemma 2.1 also tells us that scod $X_{w}=\operatorname{codim} X_{w}+$ $\left\langle-\theta_{L}(w),-2 w \rho\right\rangle$. Recall that because $w \in W^{L}$, we have $\operatorname{codim} X_{w}=\left|\Phi^{+} \backslash \Phi_{L}\right|-\ell(w)$ and $\theta_{L}(w)=\theta(w)$. (See [3, Chap. 2].) Moreover, $\langle-\theta(w),-2 w \rho\rangle=\left\langle w^{-1} \theta(w), 2 \rho\right\rangle=\left\langle-\theta\left(w^{-1}\right), 2 \rho\right\rangle$. Combining these observations gives us the following theorem:

Theorem 2.2. There is a unique s-structure on G / P compatible with those on the various X_{w}°. For $w \in W^{L}$, the staggered codimension of X_{w}, with respect to $\omega_{G / P}$, is given by $\operatorname{scod} X_{w}=\left|\Phi^{+} \backslash \Phi_{L}\right|-\ell(w)-\left\langle\theta\left(w^{-1}\right), 2 \rho\right\rangle$.

3. Main result

Theorem 3.1. With respect to the s-structure and dualizing complex of Theorem $2.2, \mathcal{D}^{B}(G / P)$ admits a strictly monotone and comonotone perversity function. For any such perversity, all objects in the heart of the corresponding staggered t-structure have finite length. In particular, the set of simple staggered sheaves $\left\{\mathcal{I C}\left(X_{w}, \mathcal{O}_{X_{w}^{\circ}}(\lambda)\right)\right\}$, where $\lambda \in \Lambda$ and $w \in W^{L}$, forms a basis for $K^{B}(G / P)$.

By the remarks in the introduction, this theorem follows from Proposition 3.6 below. Throughout this section, the notation " $u \cdot v$ " for the product of $u, v \in W$ will be used to indicate that $\ell(u v)=\ell(u)+\ell(v)$. Note that if s is a simple reflection corresponding to a simple root $\alpha, \ell(s w)>\ell(w)$ if and only if $\alpha \in \Pi(w)$.

Lemma 3.2. Let s be a simple reflection, and let α be the corresponding simple root. If $\ell(s w)>\ell(w)$, then $\pi(s w)=$ $s \pi(w)+\alpha$ and $\theta(s w)=s \theta(w)+\alpha$.

Proof. Since $\Pi(s)=\Phi^{+} \backslash\{\alpha\}$, it is easy to see that if $\alpha \in \Pi(w)$, then $\Pi(s w)=s(\Pi(w) \backslash\{\alpha\})$, and hence that $\pi(s w)=s(\pi(w)-\alpha)=s \pi(w)+\alpha$. The proof of the second formula is similar.

Lemma 3.3. For any $w \in W$, we have $\langle\pi(w), \theta(w)\rangle=0$.

Proof. Note that $\Pi(w) \cup \Theta(w)=\Phi^{+}$. Also, since $-\Theta(w)=\Phi^{-} \cap w\left(\Phi^{+}\right)$, we have $\Pi(w) \cup-\Theta(w)=w\left(\Phi^{+}\right)$. Thus, $\pi(w)+\theta(w)=2 \rho$, and $\pi(w)-\theta(w)=w(2 \rho)$. Then $4\langle\pi(w), \theta(w)\rangle=\langle\pi(w)+\theta(w), \pi(w)+\theta(w)\rangle-\langle\pi(w)-$ $\theta(w), \pi(w)-\theta(w)\rangle=\langle 2 \rho, 2 \rho\rangle-\langle w(2 \rho), w(2 \rho)\rangle=0$.

Proposition 3.4. If $\alpha \in \Pi(w)$ is a simple root, then $\langle\alpha, \theta(w)\rangle \leqslant 0$.

Proof. Let s denote the simple reflection corresponding to α, and let $\gamma \in \Theta(w)$. Of course, if $s \gamma=\gamma$, then $\langle\alpha, \gamma\rangle=0$. If $s \gamma \neq \gamma$ but $s \gamma \in \Theta(w)$ as well, then $\langle\alpha, \gamma+s \gamma\rangle=0$. It remains to show that if $s \gamma \notin \Theta(w)$, then $\langle\alpha, \gamma\rangle \leqslant 0$. Suppose instead that $\langle\alpha, \gamma\rangle>0$, and consider $\langle s \gamma, w(2 \rho)\rangle=\langle\gamma, w(2 \rho)\rangle-\left\langle\alpha^{\vee}, \gamma\right\rangle\langle\alpha, w(2 \rho)\rangle$. Since $\gamma \in w\left(\Phi^{-}\right)$and $\alpha \in w\left(\Phi^{+}\right)$by assumption, we have $\langle\gamma, w(2 \rho)\rangle<0$ and $\langle\alpha, w(2 \rho)\rangle>0$. Also, $\left\langle\alpha^{\vee}, \gamma\right\rangle>0$ since $\langle\alpha, \gamma\rangle>0$, so the calculation above shows that $\langle s \gamma, w(2 \rho)\rangle<0$, and hence that $s \gamma \in w\left(\Phi^{-}\right)$. But clearly $s \gamma \in \Phi^{+}$as well (since $\gamma \neq \alpha)$, so we find that $s \gamma \in \Theta(w)$, a contradiction.

Proposition 3.5. Let s be a simple reflection, corresponding to the simple root α. Let $v, w \in W$ be such that $\ell(v s w)=$ $\ell(v)+1+\ell(w)$. Then $\langle\pi(v w), 2 \rho\rangle-\langle\pi(v s w), 2 \rho\rangle=\left(1-\left\langle\alpha^{\vee}, \theta\left(v^{-1}\right)\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle>0$.

Proof. We proceed by induction on $\ell(v)$. First, suppose that $v=1$. Note that $\theta\left(v^{-1}\right)=0$. Since $2 \rho=\pi(w)+\theta(w)$, Lemma 3.3 implies that $\langle\pi(w), 2 \rho\rangle=\langle\pi(w), \pi(w)\rangle$. Similarly,

$$
\begin{aligned}
\langle\pi(s w), 2 \rho\rangle & =\langle\pi(s w), \pi(s w)\rangle=\langle s \pi(w)+\alpha, s \pi(w)+\alpha\rangle \\
& =\langle s \pi(w), s \pi(w)\rangle+2|s \pi(w), \alpha\rangle+\langle\alpha, \alpha\rangle=\langle\pi(w), \pi(w)\rangle+2\langle\pi(w), s \alpha\rangle+\langle 2 \rho, \alpha\rangle \\
& =\langle\pi(w), 2 \rho\rangle-2\langle\pi(w), \alpha\rangle+\langle\pi(w)+\theta(w), \alpha\rangle=\langle\pi(w), 2 \rho\rangle-\langle\pi(w)-\theta(w), \alpha\rangle .
\end{aligned}
$$

It is easy to see that $\pi(w)-\theta(w)=w(2 \rho)$, whence it follows that $\langle\pi(w), 2 \rho\rangle-\langle\pi(s w), 2 \rho\rangle=\left\langle w^{-1} \alpha, 2 \rho\right\rangle$. Finally, the fact that $\ell(s w)>\ell(w)$ implies that $w^{-1} \alpha \in \Phi^{+}$, so $\left\langle w^{-1} \alpha, 2 \rho\right\rangle>0$.

Now, suppose $\ell(v) \geqslant 1$, and write $v=t \cdot x$, where t is a simple reflection with simple root β. Using the special case of the proposition that is already established, we find $\langle\pi(x s w), 2 \rho\rangle-\langle\pi(t x s w), 2 \rho\rangle=\left\langle w^{-1} s x^{-1} \beta, 2 \rho\right\rangle$ and $\langle\pi(x w), 2 \rho\rangle-\langle\pi(t x w), 2 \rho\rangle=\left\langle w^{-1} x^{-1} \beta, 2 \rho\right\rangle$. Using the fact that $s x^{-1} \beta=x^{-1} \beta-\left\langle\alpha^{\vee}, x^{-1} \beta\right\rangle \alpha$, we find

$$
\begin{aligned}
& \langle\pi(t x w), 2 \rho\rangle-\langle\pi(t x s w), 2 \rho\rangle=(\langle\pi(x w), 2 \rho\rangle-\langle\pi(x s w), 2 \rho\rangle)+\left(\left\langle w^{-1} s x^{-1} \beta, 2 \rho\right\rangle-\left\langle w^{-1} x^{-1} \beta, 2 \rho\right\rangle\right) \\
& \quad=\left(1-\left\langle\alpha^{\vee}, \theta\left(x^{-1}\right)\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle-\left\langle\alpha^{\vee}, x^{-1} \beta\right\rangle\left\langle w^{-1} \alpha, 2 \rho\right\rangle=\left(1-\left\langle\alpha^{\vee}, \theta\left(x^{-1}\right)+x^{-1} \beta\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle .
\end{aligned}
$$

An argument similar to that of Lemma 3.2 shows that $\theta\left(x^{-1}\right)+x^{-1} \beta=\theta\left(x^{-1} t\right)=\theta\left(v^{-1}\right)$, so the desired formula is established. Since $\ell(v s)>\ell(v)$, we also have $\ell\left(s v^{-1}\right)>\ell\left(v^{-1}\right)$, and then Proposition 3.4 tells us that $\left\langle\alpha^{\vee}, \theta\left(v^{-1}\right)\right\rangle \leqslant 0$. Thus, $\langle\pi(v w), 2 \rho\rangle-\langle\pi(v s w), 2 \rho\rangle>0$.

The preceding proposition implies that for any $v, w \in W$ with $v<w$ in the Bruhat order, $\langle\theta(v), 2 \rho\rangle-$ $\langle\theta(w), 2 \rho\rangle<0$. When $v, w \in W_{L}$, we deduce from Theorem 2.2 the following result, and thus establish Theorem 3.1:

Proposition 3.6. If $X_{v} \subset \overline{X_{w}}$, then $\operatorname{scod} X_{v}-\operatorname{scod} X_{w} \geqslant 2$.
Remark 3.7. Here is a sketch of an alternate, geometric proof of this proposition, following a suggestion of the referee. It suffices to show that $v<w$ implies $\langle\theta(v), 2 \rho\rangle-\langle\theta(w), 2 \rho\rangle<0$. That is equivalent to showing that the map $w \mapsto\langle w(2 \rho), 2 \rho\rangle$ is strictly decreasing, and then in turn to showing that the angle between the vectors $w(2 \rho)$ and 2ρ strictly increases as a function of w. That can be deduced from the fact that if $v<w$ and $w=t v$ for some reflection t, then 2ρ and $v(2 \rho)$ both lie on the same side of the reflecting hyperplane for t, and $w(2 \rho)$ lies on the other.

Acknowledgements

The authors thank David Treumann and the referee for valuable suggestions.

References

[1] P. Achar, Staggered t-structures on derived categories of equivariant coherent sheaves, arXiv:0709.1300v1 [math.RT].
[2] R. Bezrukvnikov, Perverse coherent sheaves (after Deligne), arXiv: math.AG/0005152.
[3] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley \& Sons, New York, 1985.
[4] R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics, vol. 20, Springer-Verlag, Berlin, 1966.

[^0]: E-mail addresses: pramod@math.lsu.edu (P.N. Achar), sage@math.lsu.edu (D.S. Sage).
 1 The research of the first author was partially supported by NSF grant DMS-0500873.
 2 The research of the second author was partially supported by NSF grant DMS-0606300.

