
C. R. Acad. Sci. Paris, Ser. I 347 (2009) 139–142

Group Theory

Staggered sheaves on partial flag varieties

Pramod N. Achar 1, Daniel S. Sage 2

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Received 11 December 2007; accepted after revision 23 December 2008

Available online 5 February 2009

Presented by Pierre Deligne

Abstract

Staggered t-structures are a class of t-structures on derived categories of equivariant coherent sheaves. In this Note, we show that
the derived category of coherent sheaves on a partial flag variety, equivariant for a Borel subgroup, admits a staggered t-structure
with the property that all objects in its heart have finite length. As a consequence, we obtain a basis for its equivariant K-theory
consisting of simple staggered sheaves. To cite this article: P.N. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Faisceaux échelonnés sur les variétés de drapeaux partiels. Les t-structures échelonnées sont certaines t-structures sur des
catégories dérivées des faisceaux cohérents équivariants. Nous montrons ici que la catégorie dérivée des faisceaux cohérents sur
une variété de drapeaux partiels, équivariants sous un sous-groupe de Borel, admet une t-structure échelonnée telle que tout objet de
son cœur soit de longueur finie. Par conséquent, l’ensemble des faisceaux échelonnés simples constitue une base pour sa K-théorie
équivariante. Pour citer cet article : P.N. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let X be a variety over an algebraically closed field, and let G be a linear algebraic group acting on X with
finitely many orbits. Let CohG(X) be the category of G-equivariant coherent sheaves on X, and let DG(X) denote
its bounded derived category. Assume that CohG(X) has enough locally free objects. Staggered sheaves, introduced
in [1], are the objects in the heart of a certain t-structure on DG(X), generalizing the perverse coherent t-structure [2].
The definition of this t-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of
a Serre–Grothendieck dualizing complex ωX ∈ DG(X) [4]; and (3) a perversity, which is an integer-valued function
on the set of G-orbits, subject to certain constraints. When the perversity is “strictly monotone and comonotone,” the
category of staggered sheaves is particularly nice: every object has finite length, and every simple object arises by
applying an intermediate-extension (“IC”) functor to an irreducible vector bundle on a G-orbit.

An s-structure on X is a certain kind of increasing filtration of CohG(X) by Serre subcategories {CohG(X)�n}n∈Z,
subject to various axioms (see Section 1). Philosophically, an s-structure plays a role analogous to that of weight
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filtrations in the theory of mixed constructible sheaves. Given an s-structure, let CohG(X)�n ⊂ CohG(X) denote
the right-orthogonal to CohG(X)�n−1. The staggered codimension of an orbit closure iC : C → X, denoted scodC,
is defined to be codimC + n, where n is the unique integer such that i!CωX|C ∈ DG(C) is a shift of an object in
CohG(C)�n ∩ CohG(C)�n. (Staggered codimensions are, in general, sensitive to the choice of ωX . In this paper,
whenever X is smooth, ωX will denote the canonical bundle of X.) Strictly monotone and comonotone perversities
exist if and only if scodD � scodC + 2 whenever D � C. (If this holds, one may take � 1

2 scodC� as the perversity.)
The goal of this Note is to establish the existence of strictly monotone and comonotone perversities for suitable

s-structures on partial flag varieties. As a consequence, we obtain a basis for the equivariant K-theory KB(G/P )

consisting of simple staggered sheaves.

1. A gluing theorem for s-structures

If X happens to be a G-homogeneous space (i.e., of the form X = G/H for some closed subgroup H ⊂ G),
the axioms for an s-structure are equivalent to the following: (1) If F ∈ CohG(X)�n and G ∈ CohG(X)�m, then
F ⊗ G ∈ CohG(X)�n+m. (2) Each CohG(X)�n is a Serre subcategory of CohG(X). (3) If F ∈ CohG(X)�n and G ∈
CohG(X)�m, then F ⊗ G ∈ CohG(X)�n+m. If X consists of many G-orbits, the last two axioms must be replaced by
a collection of “local” conditions on all G-stable closed subschemes (see [1] for details), and specifying an s-structure
on X directly can become quite arduous. The following “gluing theorem” lets us instead specify an s-structure on X

by specifying one on each G-orbit:

Theorem 1.1. For each orbit C ⊂ X, let IC ⊂ OX denote the ideal sheaf corresponding to the closed subscheme
iC :C ↪→ X. Suppose each orbit C is endowed with an s-structure, and that i∗C IC |C ∈ CohG(C)�−1. There is a
unique s-structure on X whose restriction to each orbit is the given s-structure.

Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that i∗C IC |C ∈
CohG(C)�−1 is replaced by the following two assumptions: (F1) For each orbit C, i∗C IC |C ∈ CohG(C)�0. (F2) Each
F ∈ CohG(C)�w admits an extension F1 ∈ CohG(C) whose restriction to any smaller orbit C′ ⊂ C is in CohG(C′)�w .
Condition (F1) is trivially implied by the stronger assumption that i∗C IC |C ∈ CohG(C)�−1. It suffices, then, to show
that (F2) is implied by it as well. Given F ∈ CohG(C)�w , let G ∈ CohG(C) be some sheaf such that G|C � F .
Let C′ ⊂ C � C be a maximal orbit (with respect to the closure partial order) such that i∗

C′ G|C′ /∈ CohG(C′)�w . (If
there is no such C′, then G is the desired extension of F , and there is nothing to prove.) Let v ∈ Z be such that
i∗
C′ G|C′ ∈ CohG(C′)�v . By assumption, we have v > w. Let G′ = G ⊗ I ⊗v−w

C′ . Since IC′ |X�C′ is isomorphic to the

structure sheaf of X \ C′, we see that G′|C\C′ � G|C\C′ . On the other hand, according to axiom (1) above, the fact

that i∗
C′ IC′ |C′ ∈ CohG(C′)�−1 implies that i∗

C′ G′|C′ � i∗
C′ G|C′ ⊗ (i∗

C′ IC′ |C′)⊗v−w ∈ CohG(C′)�w . Thus, G′ is a new
extension of F such that the number of orbits in C \ C where (F2) fails is fewer than for G . Since the total number of
orbits is finite, this construction can be repeated until an extension F1 satisfying (F2) is obtained. �
2. s-structures on Bruhat cells

Let G be a reductive algebraic group over an algebraically closed field, and let T ⊂ B ⊂ P be a maximal torus, a
Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P containing T . The Lie
algebras of G, P , and B are denoted g, b, and p.

Let W be the Weyl group of G (with respect to T ), and let Φ be its root system. Let Φ+ be the set of positive roots
corresponding to B . Let WL ⊂ W and ΦL ⊂ Φ be the Weyl group and root system of L, and let ΦP = ΦL ∪ Φ+.
Let WL ⊂ W be the set of minimal-length right coset representatives for WL. For each w ∈ WL, we fix once and
for all a representative in G, also denoted w. We put Bw = wBw−1 and Pw = wPw−1, and we write bw and pw

for their Lie algebras. Let X◦
w denote the Bruhat cell BwP/P , let Xw denote its closure (a Schubert variety), and let

iw :Xw → G/P be the inclusion. Let Iw denote the ideal sheaf on G/P corresponding to Xw .
Let Λ denote the weight lattice of T , and let ρ = 1

2

∑
Φ+. (For a set Ψ ⊂ Φ , we write “

∑
Ψ ” for

∑
α∈Ψ α.) For

any w ∈ W , we define various subsets of Φ+ and elements of Λ as follows:



P.N. Achar, D.S. Sage / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 139–142 141
Π(w) = Φ+ ∩ w(Φ+), π(w) =
∑

Π(w), ΠL(w) = Φ+ ∩ w(Φ+ \ ΦL), πL(w) =
∑

ΠL(w),

Θ(w) = Φ+ ∩ w(Φ−), θ(w) =
∑

Θ(w), ΘL(w) = Φ+ ∩ w(Φ− \ ΦL), θL(w) =
∑

ΘL(w).

Let 〈·,·〉 denote a W -invariant positive-definite bilinear form on Λ such that 〈2ρ,λ〉 ∈ Z for all λ ∈ Λ. Now,
for w ∈ WL, the category CohB(X◦

w) is equivalent to the category Rep(Bw ∩ B) of representations of the isotropy
group Pw ∩ B = Bw ∩ B . We define an s-structure on X◦

w via this equivalence as follows: CohB(X◦
w

)
�n

� {V ∈
Rep(Bw ∩B) | 〈λ,−2wρ〉 � n for all weights λ occurring in V }. It follows that CohB(X◦

w)�n � {V ∈ Rep(Bw ∩B) |
〈λ,−2wρ〉 � n for all weights λ occurring in V }. Below, we regard ωX◦

w
and i∗w Iw as objects of Rep(Bw ∩ B):

Lemma 2.1. The T -weight on ωX◦
w

is −θL(w), and the set of T -weights on i∗w Iw is ΠL(w).

Proof. For any weight ψ ∈ Λ, let Vψ denote the 1-dimensional T -representation of weight ψ , and for any subset
Ψ ⊂ Λ, let V (Ψ ) = ⊕

ψ∈Ψ Vψ . The tangent space to G/P at the point wP/P is g/pw . As a T -representation,
this is isomorphic to V (w(Φ \ ΦP )) � V (w(Φ− \ ΦL)). The tangent space to the B-orbit through that point is
the subspace b/b ∩ pw � V (Φ+ ∩ w(Φ− \ ΦL)) � V (ΘL(w)), and the normal space is the quotient g/(b + pw) �
V (Φ− ∩ w(Φ− \ ΦL)) � V (−ΠL(w)). Since the canonical bundle ωX◦

w
is the top exterior power of the cotangent

bundle, and i∗w Iw is the conormal bundle, the result follows. �
Since 〈α,−2wρ〉 = 〈w−1α,−2ρ〉 < 0 for all α ∈ ΠL(w), we see from Lemma 2.1 that i∗w Iw|X◦

w
∈ CohB(X◦

w)�−1,
and then Theorem 1.1 gives us an s-structure on G/P . Separately, Lemma 2.1 also tells us that scodXw = codimXw +
〈−θL(w),−2wρ〉. Recall that because w ∈ WL, we have codimXw = |Φ+ \ ΦL| − �(w) and θL(w) = θ(w). (See
[3, Chap. 2].) Moreover, 〈−θ(w),−2wρ〉 = 〈w−1θ(w),2ρ〉 = 〈−θ(w−1),2ρ〉. Combining these observations gives
us the following theorem:

Theorem 2.2. There is a unique s-structure on G/P compatible with those on the various X◦
w . For w ∈ WL, the

staggered codimension of Xw , with respect to ωG/P , is given by scodXw = |Φ+ \ ΦL| − �(w) − 〈θ(w−1),2ρ〉.

3. Main result

Theorem 3.1. With respect to the s-structure and dualizing complex of Theorem 2.2, DB(G/P ) admits a strictly
monotone and comonotone perversity function. For any such perversity, all objects in the heart of the corresponding
staggered t-structure have finite length. In particular, the set of simple staggered sheaves {I C(Xw, OX◦

w
(λ))}, where

λ ∈ Λ and w ∈ WL, forms a basis for KB(G/P ).

By the remarks in the introduction, this theorem follows from Proposition 3.6 below. Throughout this section, the
notation “u · v” for the product of u,v ∈ W will be used to indicate that �(uv) = �(u)+ �(v). Note that if s is a simple
reflection corresponding to a simple root α, �(sw) > �(w) if and only if α ∈ Π(w).

Lemma 3.2. Let s be a simple reflection, and let α be the corresponding simple root. If �(sw) > �(w), then π(sw) =
sπ(w) + α and θ(sw) = sθ(w) + α.

Proof. Since Π(s) = Φ+ \ {α}, it is easy to see that if α ∈ Π(w), then Π(sw) = s(Π(w) \ {α}), and hence that
π(sw) = s(π(w) − α) = sπ(w) + α. The proof of the second formula is similar. �
Lemma 3.3. For any w ∈ W , we have 〈π(w), θ(w)〉 = 0.

Proof. Note that Π(w) ∪ Θ(w) = Φ+. Also, since −Θ(w) = Φ− ∩ w(Φ+), we have Π(w) ∪ −Θ(w) = w(Φ+).
Thus, π(w)+θ(w) = 2ρ, and π(w)−θ(w) = w(2ρ). Then 4〈π(w), θ(w)〉 = 〈π(w)+θ(w),π(w)+θ(w)〉−〈π(w)−
θ(w),π(w) − θ(w)〉 = 〈2ρ,2ρ〉 − 〈w(2ρ),w(2ρ)

〉 = 0. �
Proposition 3.4. If α ∈ Π(w) is a simple root, then 〈α, θ(w)〉 � 0.
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Proof. Let s denote the simple reflection corresponding to α, and let γ ∈ Θ(w). Of course, if sγ = γ , then 〈α,γ 〉 = 0.
If sγ �= γ but sγ ∈ Θ(w) as well, then 〈α,γ + sγ 〉 = 0. It remains to show that if sγ /∈ Θ(w), then 〈α,γ 〉 � 0.
Suppose instead that 〈α,γ 〉 > 0, and consider 〈sγ,w(2ρ)〉 = 〈γ,w(2ρ)〉 − 〈α∨, γ 〉〈α,w(2ρ)〉. Since γ ∈ w(Φ−) and
α ∈ w(Φ+) by assumption, we have 〈γ,w(2ρ)〉 < 0 and 〈α,w(2ρ)〉 > 0. Also, 〈α∨, γ 〉 > 0 since 〈α,γ 〉 > 0, so
the calculation above shows that 〈sγ,w(2ρ)〉 < 0, and hence that sγ ∈ w(Φ−). But clearly sγ ∈ Φ+ as well (since
γ �= α), so we find that sγ ∈ Θ(w), a contradiction. �
Proposition 3.5. Let s be a simple reflection, corresponding to the simple root α. Let v,w ∈ W be such that �(vsw) =
�(v) + 1 + �(w). Then 〈π(vw),2ρ〉 − 〈π(vsw),2ρ〉 = (1 − 〈α∨, θ(v−1)〉)〈w−1α,2ρ〉 > 0.

Proof. We proceed by induction on �(v). First, suppose that v = 1. Note that θ(v−1) = 0. Since 2ρ = π(w) + θ(w),
Lemma 3.3 implies that 〈π(w),2ρ〉 = 〈π(w),π(w)〉. Similarly,

〈
π(sw),2ρ

〉 = 〈
π(sw),π(sw)

〉 = 〈
sπ(w) + α, sπ(w) + α

〉

= 〈
sπ(w), sπ(w)

〉 + 2
〈
sπ(w),α

〉 + 〈α,α〉 = 〈
π(w),π(w)

〉 + 2
〈
π(w), sα

〉 + 〈2ρ,α〉
= 〈

π(w),2ρ
〉 − 2

〈
π(w),α

〉 + 〈
π(w) + θ(w),α

〉 = 〈
π(w),2ρ

〉 − 〈
π(w) − θ(w),α

〉
.

It is easy to see that π(w) − θ(w) = w(2ρ), whence it follows that 〈π(w),2ρ〉 − 〈π(sw),2ρ〉 = 〈w−1α,2ρ〉. Finally,
the fact that �(sw) > �(w) implies that w−1α ∈ Φ+, so 〈w−1α,2ρ〉 > 0.

Now, suppose �(v) � 1, and write v = t · x, where t is a simple reflection with simple root β . Using the special
case of the proposition that is already established, we find 〈π(xsw),2ρ〉 − 〈π(txsw),2ρ〉 = 〈w−1sx−1β,2ρ〉 and
〈π(xw),2ρ〉 − 〈π(txw),2ρ〉 = 〈w−1x−1β,2ρ〉. Using the fact that sx−1β = x−1β − 〈α∨, x−1β〉α, we find

〈
π(txw),2ρ

〉 − 〈
π(txsw),2ρ

〉 = (〈
π(xw),2ρ

〉 − 〈
π(xsw),2ρ

〉) + (〈
w−1sx−1β,2ρ

〉 − 〈
w−1x−1β,2ρ

〉)

= (
1 − 〈

α∨, θ
(
x−1)〉)〈w−1α,2ρ

〉 − 〈
α∨, x−1β

〉〈
w−1α,2ρ

〉 = (
1 − 〈

α∨, θ
(
x−1) + x−1β

〉)〈
w−1α,2ρ

〉
.

An argument similar to that of Lemma 3.2 shows that θ(x−1) + x−1β = θ(x−1t) = θ(v−1), so the desired for-
mula is established. Since �(vs) > �(v), we also have �(sv−1) > �(v−1), and then Proposition 3.4 tells us that
〈α∨, θ(v−1)〉 � 0. Thus, 〈π(vw),2ρ〉 − 〈π(vsw),2ρ〉 > 0. �

The preceding proposition implies that for any v,w ∈ W with v < w in the Bruhat order, 〈θ(v),2ρ〉 −
〈θ(w),2ρ〉 < 0. When v,w ∈ WL, we deduce from Theorem 2.2 the following result, and thus establish Theorem 3.1:

Proposition 3.6. If Xv ⊂ Xw , then scodXv − scodXw � 2.

Remark 3.7. Here is a sketch of an alternate, geometric proof of this proposition, following a suggestion of the
referee. It suffices to show that v < w implies 〈θ(v),2ρ〉− 〈θ(w),2ρ〉 < 0. That is equivalent to showing that the map
w �→ 〈w(2ρ),2ρ〉 is strictly decreasing, and then in turn to showing that the angle between the vectors w(2ρ) and 2ρ

strictly increases as a function of w. That can be deduced from the fact that if v < w and w = tv for some reflection
t , then 2ρ and v(2ρ) both lie on the same side of the reflecting hyperplane for t , and w(2ρ) lies on the other.
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