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Abstract

Let X = {X(t), t ∈ [0, T ]} be a second order random process of which n independent realizations are observed on a fixed grid
of p time points. Under mild regularity assumptions on the sample paths of X, we show the asymptotic normality of suitable
nonparametric estimators of the trend function μ = EX in the space C([0, T ]) as n,p → ∞ and, using Gaussian process theory,
we derive approximate simultaneous confidence bands for μ. To cite this article: D. Degras, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimation non paramétrique d’une tendance à partir de réalisations d’un processus à temps continu. Soit X={X(t),

t ∈ [0, T ]} un processus aléatoire du second ordre dont on observe n réalisations indépendantes sur une grille de p points déter-
ministes. Sous de faibles conditions de régularité sur les trajectoires de X, nous prouvons la normalité asymptotique d’estimateurs
non paramétriques de la tendance μ = EX dans l’espace C([0, T ]) lorsque n,p → ∞, puis nous obtenons des bandes de confiance
simultanées approchées pour μ à l’aide de la théorie des processus Gaussiens. Pour citer cet article : D. Degras, C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In various applied fields such as internet traffic monitoring, medical imagery, or signal processing, modern technol-
ogy has allowed one to collect data routinely from population samples with a high temporal and/or spatial resolution.
Indeed, such datasets should be viewed as (collections of) curves or functions rather than as high-dimensional vec-
tors; they are thus commonly termed functional data. (See [8,13] for a comprehensive introduction to functional data
analysis.) Typical functional data may be modeled as observations of independent realizations X1, . . . ,Xn of a second
order random process X = {X(t), t ∈ D} at fixed design points t1, . . . , tp , where D denotes a continuous temporal
and/or spatial domain. In this framework, the observed data are

Yij = Xi(tj ) + εij , 1 � i � n, 1 � j � p, (1)
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where the εij are mean zero random variables (r.v.) representing potential measurement errors.
The trend function μ = EX often appears as a population mean response function, which motivates its inference.

The nonparametric regression literature contains several results on the asymptotic properties of estimators of μ as the
sample sizes n and p go to infinity. For instance when D = [0,1], mean-square convergence rates of kernel and spline
estimators can be found in [2,3,6,9]. When D is a compact metric space, [5] gives a universal consistency result as
well as the asymptotic normality of all usual regression estimators in the sense of finite dimensional distributions and
of the space L2(D), with an application to simultaneous confidence intervals. The task of building (nonparametric
and simultaneous) confidence bands for μ, which proves useful in various problems of prediction, model diagnostic,
or calibration (e.g. [1,11]), has received considerable attention in the classical regression setting (e.g. [7,14]) but not,
to our knowledge, for functional data.

In this Note, we study the model (1) in the case where the random process X is indexed by a compact interval D =
[0, T ] and has mildly regular sample paths. In Section 2, we state the asymptotic normality of suitable nonparametric
estimators of μ in the space C([0, T ]) of all continuous functions on [0, T ] as n,p → ∞. In Section 3, we use previous
results to build approximate simultaneous confidence bands for μ. Finally in Section 4, some potential applications
and extensions of our results are discussed.

2. Asymptotic normality of nonparametric estimators

We state here the assumptions made on the random process X and on the model (1) of Section 1.

(A.1) X is mean-square continuous on D = [0, T ].
(A.2) The sample paths X(ω, ·) are almost surely (a.s.) variation-bounded, with their total variation bounded by

B(ω), where B is a r.v. with finite variance; or
(A.2′) |X(ω, s) − X(ω, t)| � C|s − t |β a.s. for some positive constants C and β .
(A.3) μ has two bounded derivatives on [0, T ].
(B.1) The data form a triangular array: Yij = Yij (n), tj = tj (n), and p = p(n), with p(n) → ∞ as n → ∞.
(B.2) The random errors εij are mutually independent and independent of the Xi ; they have mean zero and common

variance σ 2 � 0.
(B.3) The tj are ordered (0 � t1 < · · · < tp � T ) and they have a quasi-uniform repartition, i.e., writing t0 = 0 and

tp+1 = T , it holds that
max0�j�p(tj+1−tj )

min1�j�p−1(tj+1−tj )
= O(1) as n,p → ∞.

Note that (A.2′) implies (A.2). Also, (B.3) ensures that the tj are regularly spaced in [0, T ]; it is fulfilled e.g. when
the tj are equally spaced or are generated by a regular probability density function (p.d.f.).

For each assumption (A.2) and (A.2′), we now introduce a suitable nonparametric estimator of μ and give its
asymptotic distribution. Under (A.2), we use the interpolation-type estimator of [4], denoted by μ̂C , with a boundary
correction. We recall here its definition. Let Yj = (

∑n
i=1 Yij )/n for 1 � j � p, and let Y(t) be the process obtained

by linear interpolation of the (tj , Yj ) such that Y(t) = Y1 if t � t1 and Y(t) = Yp if t � tp . The estimator μ̂C is the
convolution of a kernel function K with Y :

μ̂C(t) = 1∫ T

0 Kh(t − u)du

T∫
0

Kh(t − u)Y (u)du, Kh(·) = K(·/h)/h. (2)

For convenience we take K as a symmetric, compactly supported, Lipschitz-continuous p.d.f. The real h > 0 is a fixed
bandwidth. Following [12], we say that a sequence (Zn) of random elements of C([0, T ]) converges weakly to a limit
Z in C([0, T ]) if Eϕ(Zn) → Eϕ(Z) as n → ∞ for all uniformly continuous functional ϕ on C([0, T ]) equipped with
the sup-norm. We denote by R the covariance function of the process X and by G(0,C) any Gaussian process indexed
by [0, T ] with mean zero and covariance C. We are now in position to state the weak convergence of μ̂C in C([0, T ])
as n,p → ∞ (recall that p = p(n)).

Theorem 2.1. Assume that (A.1), (A.2), (B.1)–(B.3) hold and that h = h(n,p) → 0 and ph2 → ∞ as n,p → ∞.
Then n1/2(μ̂C − Eμ̂C) converges weakly to G(0,R) in C([0, T ]). If in addition (A.3) holds and n = o(p), nh2 → 0
as n,p → ∞, then n1/2(μ̂C − μ) also converges to G(0,R) in C([0, T ]).
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Next, we address the case where X satisfies (A.2′) (Hölder continuity). We consider the local linear estimator,
denoted here by μ̂L and defined by

μ̂L(t) = θ̂0, (θ̂0, θ̂1) = argmin
(θ0,θ1)

p∑
j=1

(
Yj − θ0 − (tj − t)θ1

)2
Kh(tj − t). (3)

Theorem 2.2. Assume that (A.1), (A.2′), (B.1)–(B.3) hold and that h = h(n,p) → 0 and ph2 → ∞ as n,p → ∞.
Then n1/2(μ̂L − Eμ̂L) converges weakly to G(0,R) in C([0, T ]). If in addition (A.3) holds, n = o(p2), and nh4 → 0
as n,p → ∞, then n1/2(μ̂L − μ) also converges to G(0,R) in C([0, T ]).

Remarks.

(1) The proofs of the these theorems are similar and rely on the following steps: (i) note that the estimator is linear
in the data; (ii) use the functional central limit Theorem 10.6 of [12] for the estimator applied to the data without
noise Xi(tj ); (iii) show that under condition ph2 → ∞, the estimator applied to the errors εij becomes negligible
in probability before n−1/2 as n,p → ∞, uniformly over [0, T ]; (iv) impose additional conditions on μ and on
the joint rates of n,p and h to make the asymptotic bias of the estimator as o(n−1/2) uniformly over [0, T ] (in
particular the rate n = o(p) used in Theorem 2.1 is only needed to control the boundary effects in the bias of μ̂C ).

(2) Under (A.2), we can prove asymptotic normality in C([0, T ]) only for μ̂C . This is because μ̂C , as opposed to
more classical estimators, has the remarkable feature of preserving monotonicity and thus satisfies (A.2) like X,
which makes the step (ii) of the theorem proof straightforward. On the other hand, under the stronger assumption
(A.2′) the asymptotic normality in C([0, T ]) can be obtained for various classical kernel or projection estimators,
as well as for μ̂C . The choice of μ̂L here was motivated by the popularity of this estimator and by its good bias
properties.

(3) The condition ph2 → ∞ can be dropped in both theorems if there is no noise in the data (σ = 0). Besides, the
results carry over to the case of correlated errors, e.g. of autoregressive or mixing type.

(4) Theorem 2.2 corrects a mistake in the Section 4 of [15] which gives (nph)1/2 as the normalizing rate for the weak
convergence of μ̂L(t) − Eμ̂L(t). (The condition (C3∗) (ph → 0 as n → ∞) of this paper does not produce a
well-defined estimator for large n.) On the other hand, our normalizing rate n1/2 is consistent with the variance
rate n−1 found in the literature.

3. Simultaneous confidence bands

We build here approximate simultaneous confidence bands for μ at the level 1−γ ∈ (0,1). First assume that either
Theorem 2.1 or 2.2 applies, i.e. that n1/2(μ̂ − μ) converges weakly in C([0, T ]), where μ̂ denotes the corresponding
estimator (2) or (3). Assume also that the covariance function R is nondegenerate and let R̂(t, t) be any uniformly
consistent estimator of R(t, t) with respect to t ∈ [0, T ]. With Slutsky, one sees that n1/2(μ̂np − μ)/R̂(t, t)1/2 con-
verges to Z = G(0, ρ) in C([0, T ]), where ρ is the correlation function of X. It suffices then to apply a classical result
of [10] to get that

lim
λ→∞λ−2 log P

{
sup

t∈[0,T ]
Z(t) > λ

}
= −

(
2 sup

t∈[0,T ]
ρ(t, t)

)−1 = −1

2
. (4)

Finally, use (4) along with the inequality P{supt∈[0,T ] |Z(t)| > λ} � 2P{supt∈[0,T ] Z(t) > λ} to derive the following
approximate simultaneous confidence bands for μ:

μ̂(t) ± (−2 log(γ /2)R̂(t, t)/n
)1/2

(0 � t � T ). (5)

4. Discussion

The asymptotic normality results presented in this paper provide a new tool for making simultaneous inference on
a trend function μ in the context of functional data. They can plausibly be extended to the framework of multivariate
and/or vector-valued random processes and to the inference of derivatives of μ. To the best of our knowledge, the
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simultaneous confidence band procedure of Section 3 is the only one appearing in the literature for functional data. Its
implementation only requires the estimation of the mean and of the variance of X (not the whole covariance R) and
some simulations have indicated its good performances in terms of empirical coverage probability. It would benefit
from additional features such as bias correction or data-driven bandwidth selection. The asymptotic normality results
may also be applied to constructing tests for μ. A linearity test based on these results is currently under study.
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