Number Theory

Means of algebraic numbers in the unit disk

Igor E. Pritsker ${ }^{1}$
Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

Received 19 November 2008; accepted after revision 9 January 2009
Available online 6 February 2009
Presented by Jean-Pierre Serre

Abstract

Schur studied limits of the arithmetic means s_{n} of zeros for polynomials of degree n with integer coefficients and simple zeros in the closed unit disk. If the leading coefficients are bounded, Schur proved that $\lim \sup _{n \rightarrow \infty}\left|s_{n}\right| \leqslant 1-\sqrt{\mathrm{e}} / 2$. We show that $s_{n} \rightarrow 0$, and estimate the rate of convergence by generalizing the Erdős-Turán theorem on the distribution of zeros. To cite this article: I.E. Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Moyennes de nombres algébriques dans le disque unité. Schur a étudié les limites des moyennes arithmétiques s_{n} des zéros pour les polynômes à coefficients entiers de degré n ayant des zéros simples dans le disque unité fermé. Lorsque les coefficients dominants restent bornés, Schur a démontré que $\lim \sup _{n \rightarrow \infty}\left|s_{n}\right| \leqslant 1-\sqrt{\mathrm{e}} / 2$. Nous prouvons que $s_{n} \rightarrow 0$. Nous donnons une estimation du taux de convergence, grâce à une généralisation d'un théorème de Erdős-Turán sur la distribution des zéros. Pour citer cet article : I.E. Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Schur's problem and equidistribution of zeros

Let $\mathbb{Z}_{n}(D)$ be the set of polynomials of degree n with integer coefficients and all zeros in the closed unit disk D. We denote the subset of $\mathbb{Z}_{n}(D)$ with simple zeros by $\mathbb{Z}_{n}^{1}(D)$. Given $M>0$, we write $P_{n}=a_{n} z^{n}+\cdots \in \mathbb{Z}_{n}^{1}(D, M)$ if $\left|a_{n}\right| \leqslant M$ and $P_{n} \in \mathbb{Z}_{n}^{1}(D)$ (respectively $P_{n} \in \mathbb{Z}_{n}(D, M)$ if $\left|a_{n}\right| \leqslant M$ and $P_{n} \in \mathbb{Z}_{n}(D)$). Schur [9, §8] studied the limiting behavior of the arithmetic means s_{n} of zeros for polynomials from $\mathbb{Z}_{n}^{1}(D, M)$ as $n \rightarrow \infty$, where $M>0$ is an arbitrary fixed number. He showed that $\lim \sup _{n \rightarrow \infty}\left|s_{n}\right| \leqslant 1-\sqrt{\mathrm{e}} / 2$, and remarked that this lim sup is equal to 0 for monic polynomials from $\mathbb{Z}_{n}(D)$ by Kronecker's theorem [6]. We prove that $\lim _{n \rightarrow \infty} s_{n}=0$ for any sequence of polynomials from Schur's class $\mathbb{Z}_{n}^{1}(D, M), n \in \mathbb{N}$. This result is obtained as a consequence of the asymptotic equidistribution of zeros near the unit circle. Namely, if $\left\{\alpha_{k}\right\}_{k=1}^{n}$ are the zeros of P_{n}, we define the counting measure $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{\alpha_{k}}$, where $\delta_{\alpha_{k}}$ is the unit point mass at α_{k}. Consider the normalized arclength measure μ on the unit

[^0]circumference \mathbb{T}, with $\mathrm{d} \mu\left(\mathrm{e}^{\mathrm{i} t}\right):=\frac{1}{2 \pi} \mathrm{~d} t$. If the τ_{n} converge weakly to μ as $n \rightarrow \infty\left(\tau_{n} \xrightarrow{*} \mu\right)$ then $\lim _{n \rightarrow \infty} s_{n}=$ $\lim _{n \rightarrow \infty} \int z \mathrm{~d} \tau_{n}(z)=\int z \mathrm{~d} \mu(z)=0$. Thus Schur's problem is solved by the following result.

Theorem 1.1. If $P_{n}(z)=a_{n} z^{n}+\cdots \in \mathbb{Z}_{n}^{1}(D), n \in \mathbb{N}$, satisfy $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$, then $\tau_{n} \xrightarrow{*} \mu$ as $n \rightarrow \infty$.
Ideas on the equidistribution of zeros date back to Jentzsch and Szego, cf. [1, Ch. 2]. They were developed further by Erdős and Turán [4], and many others; see [1] for history and additional references. More recently, this topic received renewed attention in number theory, e.g. in the work of Bilu [2]. If the leading coefficients of polynomials are bounded, then we can allow even certain multiple zeros. Define the multiplicity of an irreducible factor Q of P_{n} as the integer $m_{n} \geqslant 0$ such that $Q^{m_{n}}$ divides P_{n}, but $Q^{m_{n}+1}$ does not divide P_{n}. If a factor Q occurs infinitely often in a sequence $P_{n}, n \in \mathbb{N}$, then $m_{n}=\mathrm{o}(n)$ means $\lim _{n \rightarrow \infty} m_{n} / n=0$. If Q is present only in finitely many P_{n}, then $m_{n}=\mathrm{o}(n)$ by definition.

Theorem 1.2. Assume that $P_{n} \in \mathbb{Z}_{n}(D, M), n \in \mathbb{N}$. If every irreducible factor in the sequence of polynomials P_{n} has multiplicity $\mathrm{o}(n)$, then $\tau_{n} \xrightarrow{*} \mu$ as $n \rightarrow \infty$.

Corollary 1.3. If $P_{n}(z)=a_{n} \prod_{k=1}^{n}\left(z-\alpha_{k}\right), n \in \mathbb{N}$, satisfy the assumptions of Theorem 1.1 or 1.2 , then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_{k}^{m}=0, \quad m \in \mathbb{N}
$$

We also show that the norms $\left\|P_{n}\right\|_{\infty}:=\max _{|z|=1}\left|P_{n}(z)\right|$ have at most subexponential growth.
Corollary 1.4. If $P_{n}, n \in \mathbb{N}$, satisfy the assumptions of Theorem 1.1 or Theorem 1.2, then

$$
\lim _{n \rightarrow \infty}\left\|P_{n}\right\|_{\infty}^{1 / n}=1
$$

This result is somewhat unexpected, as we have no direct control of the norm or coefficients (except for the leading one). For example, $P_{n}(z)=(z-1)^{n}$ has norm $\left\|P_{n}\right\|_{\infty}=2^{n}$.

We now consider quantitative aspects of the convergence $\tau_{n} \xrightarrow{*} \mu$. As an application, we obtain estimates of the convergence rate of s_{n} to 0 in Schur's problem. A classical result on the distribution of zeros is due to Erdős and Turán [4]. For $P_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ with $a_{k} \in \mathbb{C}$, let $N\left(\phi_{1}, \phi_{2}\right)$ be the number of zeros in the sector $\left\{z \in \mathbb{C}: 0 \leqslant \phi_{1} \leqslant\right.$ $\left.\arg (z) \leqslant \phi_{2}<2 \pi\right\}$, where $\phi_{1}<\phi_{2}$. Erdős and Turán [4] proved that

$$
\begin{equation*}
\left|\frac{N\left(\phi_{1}, \phi_{2}\right)}{n}-\frac{\phi_{2}-\phi_{1}}{2 \pi}\right| \leqslant 16 \sqrt{\frac{1}{n} \log \frac{\left\|P_{n}\right\|_{\infty}}{\sqrt{\left|a_{0} a_{n}\right|}}} . \tag{1}
\end{equation*}
$$

The constant 16 was improved by Ganelius, and $\left\|P_{n}\right\|_{\infty}$ was replaced by weaker integral norms by Amoroso and Mignotte; see [1] for more history and references. Our main difficulty in applying (1) to Schur's problem is the absence of an effective estimate for $\left\|P_{n}\right\|_{\infty}, P_{n} \in \mathbb{Z}_{n}^{1}(D, M)$. We prove a new "discrepancy" estimate via energy considerations from potential theory. These ideas originated in part in the work of Kleiner, and were developed by Sjögren and Hüsing, see [1, Ch. 5]. We also use the Mahler measure of a polynomial $P_{n}(z)=$ $a_{n} \prod_{k=1}^{n}\left(z-\alpha_{k}\right)$, defined by $M\left(P_{n}\right):=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P_{n}\left(\mathrm{e}^{\mathrm{i} t}\right)\right| \mathrm{d} t\right)$. Note that $M\left(P_{n}\right)=\lim _{p \rightarrow 0}\left\|P_{n}\right\|_{p}$, where $\left\|P_{n}\right\|_{p}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{n}\left(\mathrm{e}^{\mathrm{i} t}\right)\right|^{p} \mathrm{~d} t\right)^{1 / p}, p>0$. Jensen's formula readily gives $M\left(P_{n}\right)=\left|a_{n}\right| \prod_{k=1}^{n} \max \left(1,\left|\alpha_{k}\right|\right)[3, \mathrm{p} .3]$. Hence $M\left(P_{n}\right)=\left|a_{n}\right| \leqslant M$ for any $P_{n} \in \mathbb{Z}_{n}(D, M)$.

Theorem 1.5. Let $\phi: \mathbb{C} \rightarrow \mathbb{R}$ satisfy $|\phi(z)-\phi(t)| \leqslant A|z-t|, z, t \in \mathbb{C}$, and $\operatorname{supp}(\phi) \subset\{z:|z| \leqslant R\}$. If $P_{n}(z)=$ $a_{n} \prod_{k=1}^{n}\left(z-\alpha_{k}\right)$ is a polynomial with integer coefficients and simple zeros, then

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{k=1}^{n} \phi\left(\alpha_{k}\right)-\int \phi \mathrm{d} \mu\right| \leqslant A(2 R+1) \sqrt{\frac{\log \max \left(n, M\left(P_{n}\right)\right)}{n}}, \quad n \geqslant 55 . \tag{2}
\end{equation*}
$$

This theorem is related to recent results of Favre and Rivera-Letelier [5], obtained in a different setting. Choosing ϕ appropriately, we obtain an estimate of the means s_{n} in Schur's problem.

Corollary 1.6. If $P_{n} \in \mathbb{Z}_{n}^{1}(D, M)$ then

$$
\left|\frac{1}{n} \sum_{k=1}^{n} \alpha_{k}\right| \leqslant 8 \sqrt{\frac{\log n}{n}}, \quad n \geqslant \max (M, 55) .
$$

We also have an improvement of Corollary 1.4 for Schur's class $\mathbb{Z}_{n}^{1}(D, M)$.
Corollary 1.7. If $\left\{P_{n}\right\}_{n=1}^{\infty} \in \mathbb{Z}_{n}^{1}(D, M)$ then there is some $c>0$ such that $\left\|P_{n}\right\|_{\infty} \leqslant \mathrm{e}^{c \sqrt{n} \log n}$ as $n \rightarrow \infty$.
The proof of Theorem 1.5 gives a result for arbitrary polynomials with simple zeros, and for any continuous ϕ with finite Dirichlet integral $D[\phi]=\iint\left(\phi_{x}^{2}+\phi_{y}^{2}\right) \mathrm{d} A$. Moreover, all arguments may be extended to general sets of logarithmic capacity 1 , e.g. to $[-2,2]$. Using the characteristic function $\phi=\chi_{E}$, we can prove general discrepancy estimates on arbitrary sets, and obtain an Erdős-Turán-type theorem. Our results have a number of applications to the problems on integer polynomials considered in [3].

2. Proofs

Proof of Theorem 1.1. Observe that the discriminant $\Delta\left(P_{n}\right):=a_{n}^{2 n-2} \prod_{1 \leqslant j<k \leqslant n}\left(\alpha_{j}-\alpha_{k}\right)^{2}$ is an integer, as a symmetric form in the zeros of P_{n}. Since P_{n} has simple roots, we have $\Delta\left(P_{n}\right) \neq 0$ and $\left|\Delta\left(P_{n}\right)\right| \geqslant 1$. Using weak compactness, we assume that $\tau_{n} \xrightarrow{*} \tau$, where τ is a probability measure on D. Let $K_{M}(x, t):=\min (-\log |x-t|, M)$. Since $\tau_{n} \times \tau_{n} \xrightarrow{*} \tau \times \tau$, we obtain for the energy of τ that

$$
\begin{aligned}
I[\tau] & :=-\iint \log |x-t| \mathrm{d} \tau(x) \mathrm{d} \tau(t)=\lim _{M \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \iint K_{M}(x, t) \mathrm{d} \tau_{n}(x) \mathrm{d} \tau_{n}(t)\right) \\
& =\lim _{M \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}} \sum_{j \neq k} K_{M}\left(\alpha_{j}, \alpha_{k}\right)+\frac{M}{n}\right)\right) \leqslant \lim _{M \rightarrow \infty}\left(\liminf _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{j \neq k} \log \frac{1}{\left|\alpha_{j}-\alpha_{k}\right|}\right) \\
& =\liminf _{n \rightarrow \infty} \frac{1}{n^{2}} \log \frac{\left|a_{n}\right|^{2 n-2}}{\Delta\left(P_{n}\right)} \leqslant \liminf _{n \rightarrow \infty} \frac{1}{n^{2}} \log \left|a_{n}\right|^{2 n-2}=0 .
\end{aligned}
$$

Thus $I[\tau] \leqslant 0$. But $I[\nu]>0$ for any probability measure ν on D, except for $\mu[7]$. Hence $\tau=\mu$.
Proof of Theorem 1.2. Let $\phi \in C(\mathbb{C})$. Note that for any $\epsilon>0$ there are finitely many irreducible factors Q in the sequence P_{n} such that $\left|\int \phi \mathrm{d} \tau(Q)-\int \phi \mathrm{d} \mu\right| \geqslant \epsilon$, where $\tau(Q)$ is the zero counting measure for Q. Indeed, if we have an infinite sequence of such Q_{m}, then $\operatorname{deg}\left(Q_{m}\right) \rightarrow \infty$, as there are only finitely many $Q_{m} \in \mathbb{Z}_{n}(D, M)$ of bounded degree. Hence $\int \phi \mathrm{d} \tau\left(Q_{m}\right) \rightarrow \int \phi \mathrm{d} \mu$ by Theorem 1.1. Let the number of such exceptional factors Q_{m} be N. Then we have $\left|n \int \phi \mathrm{~d} \tau_{n}-n \int \phi \mathrm{~d} \mu\right| \leqslant N \mathrm{o}(n) \max _{D}\left|\phi-\int \phi \mathrm{d} \mu\right|+(n-N) \epsilon, n \in \mathbb{N}$. Hence $\lim \sup _{n \rightarrow \infty}\left|\int \phi \mathrm{~d} \tau_{n}-\int \phi \mathrm{d} \mu\right| \leqslant \epsilon$, and $\lim _{n \rightarrow \infty} \int \phi \mathrm{~d} \tau_{n}=\int \phi \mathrm{d} \mu$ after letting $\epsilon \rightarrow 0$.

Proof of Corollary 1.3. Let $\phi(z)=z^{m}$ and write $\lim _{n \rightarrow \infty} \int z^{m} \mathrm{~d} \tau_{n}(z)=\int z^{m} \mathrm{~d} \mu(z)=0$.
Proof of Corollary 1.4. Let $\left\|P_{n}\right\|_{\infty}=\left|P_{n}\left(z_{n}\right)\right|, z_{n} \in D$, and assume $\lim _{n \rightarrow \infty} z_{n}=z_{0} \in D$ by compactness. Then $\left\|P_{n}\right\|_{\infty}=\exp \left(\log \left|P_{n}\left(z_{n}\right)\right|\right)=\left|a_{n}\right| \exp \left(n \int \log \left|z_{n}-t\right| \mathrm{d} \tau_{n}(t)\right)$. Since $\tau_{n} \xrightarrow{*} \mu$, Theorem I.6.8 of [8] gives $\lim \sup _{n \rightarrow \infty}\left\|P_{n}\right\|_{\infty}^{1 / n} \leqslant \exp \left(\int \log \left|z_{0}-t\right| \mathrm{d} \mu(t)\right)=1$ [8, p. 22]. But $\left\|P_{n}\right\|_{\infty} \geqslant\left|a_{n}\right| \geqslant 1$, see [1, p. 16].

Proof of Theorem 1.5. Given $r>0$, define the measures v_{k}^{r} with $\mathrm{d} \nu_{k}^{r}\left(\alpha_{k}+r \mathrm{e}^{\mathrm{i} t}\right)=\mathrm{d} t /(2 \pi), t \in[0,2 \pi)$. Let $\tau_{n}^{r}:=$ $\frac{1}{n} \sum_{k=1}^{n} v_{k}^{r}$, and estimate $\left|\int \phi \mathrm{d} \tau_{n}-\int \phi \mathrm{d} \tau_{n}^{r}\right| \leqslant \frac{1}{n} \sum_{k=1}^{n} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\phi\left(\alpha_{k}\right)-\phi\left(\alpha_{k}+r \mathrm{e}^{\mathrm{i} t}\right)\right| \mathrm{d} t \leqslant \omega_{\phi}(r)$, where $\omega_{\phi}(r):=$ $\sup _{|z-\zeta| \leqslant r}|\phi(z)-\phi(\zeta)|$ is the modulus of continuity of ϕ.

Let $p_{v}(z):=-\int \log |z-t| \mathrm{d} \nu(t)$ be the potential of a measure ν. A direct evaluation gives that $p_{v_{k}^{r}}(z)=$ $-\log \max \left(r,\left|z-\alpha_{k}\right|\right)$ and $p_{\mu}(z)=-\log \max (1,|z|)$ [8, p. 22]. Consider $\sigma:=\tau_{n}^{r}-\mu, \sigma(\mathbb{C})=0$. One computes (or see [8, p. 92]) that $\mathrm{d} \sigma=-\frac{1}{2 \pi}\left(\partial p_{\sigma} / \partial n_{+}+\partial p_{\sigma} / \partial n_{-}\right) \mathrm{d} s$, where $\mathrm{d} s$ is the arclength on $\operatorname{supp}(\sigma)=\{|z|=$ $1\} \cup\left(\bigcup_{k=1}^{n}\left\{\left|z-\alpha_{k}\right|=r\right\}\right)$, and $n_{ \pm}$are the inner and the outer normals. We now use Green's identity $\iint_{G} u \Delta v \mathrm{~d} A=$ $\int_{\partial G} u \frac{\partial v}{\partial n} \mathrm{~d} s-\iint_{G} \nabla u \cdot \nabla v \mathrm{~d} A$ with $u=\phi$ and $v=p_{\sigma}$ in each component G of $\{|z|<R\} \backslash \operatorname{supp}(\sigma)$. Since $\Delta p_{\sigma}=0$ in G, adding the identities for all G, we obtain that

$$
\left|\int \phi \mathrm{d} \sigma\right|=\frac{1}{2 \pi}\left|\iint_{|z| \leqslant R} \nabla \phi \cdot \nabla p_{\sigma} \mathrm{d} A\right| \leqslant \frac{1}{2 \pi} \sqrt{D[\phi]} \sqrt{D\left[p_{\sigma}\right]},
$$

where $D[\phi]=\iint\left(\phi_{x}^{2}+\phi_{y}^{2}\right) \mathrm{d} A$ is the Dirichlet integral of ϕ. It is known that $D\left[p_{\sigma}\right]=2 \pi I[\sigma]$ [7, Thm 1.20], where $I[\sigma]=-\iint \log |z-t| \mathrm{d} \sigma(z) \mathrm{d} \sigma(t)=\int p_{\sigma} \mathrm{d} \sigma$. Since $p_{\mu}(z)=-\log \max (1,|z|)$, we observe that $\int p_{\mu} \mathrm{d} \mu=0$, so that $I[\sigma]=\int p_{\tau_{n}^{r}} \mathrm{~d} \tau_{n}^{r}-2 \int p_{\mu} \mathrm{d} \tau_{n}^{r}$. Further, $-\int p_{\mu} \mathrm{d} \tau_{n}^{r}=\int \log \max (1,|z|) \mathrm{d} \tau_{n}^{r}(z) \leqslant\left(\sum_{\left|\alpha_{k}\right| \leqslant 1+r} \log (1+2 r)+\right.$ $\left.\sum_{\left|\alpha_{k}\right|>1+r} \log \left|\alpha_{k}\right|\right) / n \leqslant \log (1+2 r)+\frac{1}{n} \log M\left(P_{n}\right)-\frac{1}{n} \log \left|a_{n}\right|$. We also have that $\int p_{\tau_{n}^{r}} \mathrm{~d} \tau_{n}^{r} \leqslant\left(-\sum_{j \neq k} \log \mid \alpha_{j}-\right.$ $\left.\alpha_{k} \mid-n \log r\right) / n^{2}$. We next combine the energy estimates to obtain

$$
I[\sigma] \leqslant \frac{2}{n} \log M\left(P_{n}\right)-\frac{1}{n^{2}} \log \left|a_{n}^{2} \Delta\left(P_{n}\right)\right|-\frac{1}{n} \log r+4 r .
$$

Collecting all estimates, we proceed with $\left|\int \phi \mathrm{d} \tau_{n}-\int \phi \mathrm{d} \mu\right| \leqslant\left|\int \phi \mathrm{d} \tau_{n}-\int \phi \mathrm{d} \tau_{n}^{r}\right|+\left|\int \phi \mathrm{d} \tau_{n}^{r}-\int \phi \mathrm{d} \mu\right| \leqslant \omega_{\phi}(r)+$ $\sqrt{D[\phi]} \sqrt{D\left[p_{\sigma}\right]} /(2 \pi)=\omega_{\phi}(r)+\sqrt{D[\phi]} \sqrt{I[\sigma] /(2 \pi)}$. Thus we arrive at the main inequality:

$$
\begin{equation*}
\left|\int \phi \mathrm{d} \tau_{n}-\int \phi \mathrm{d} \mu\right| \leqslant \omega_{\phi}(r)+\sqrt{\frac{D[\phi]}{2 \pi}}\left(\frac{2}{n} \log M\left(P_{n}\right)-\frac{1}{n^{2}} \log \left|a_{n}^{2} \Delta\left(P_{n}\right)\right|-\frac{1}{n} \log r+4 r\right)^{1 / 2} . \tag{3}
\end{equation*}
$$

Note that $D[\phi] \leqslant 2 \pi R^{2} A^{2}$, as $\left|\phi_{x}\right| \leqslant A$ and $\left|\phi_{y}\right| \leqslant A$ a.e. in \mathbb{C}. Also, $\omega_{\phi}(r) \leqslant A r$. Since $\left|\Delta\left(P_{n}\right)\right| \geqslant 1$ and $\left|a_{n}\right| \geqslant 1$, we have $\left|a_{n}^{2} \Delta\left(P_{n}\right)\right| \geqslant 1$. Hence (2) follows from (3) by letting $r=1 / \max \left(n, M\left(P_{n}\right)\right)$.

Proof of Corollary 1.6. Since P_{n} has real coefficients, we have that $s_{n}=\int z \mathrm{~d} \tau_{n}(z)=\int \Re(z) \mathrm{d} \tau_{n}(z)$. We let $\phi(z)=\Re(z),|z| \leqslant 1 ; \phi(z)=\Re(z)(1-\log |z|), 1 \leqslant|z| \leqslant \mathrm{e} ;$ and $\phi(z)=0,|z| \geqslant \mathrm{e}$. An elementary computation shows that $\left|\phi_{x}(z)\right| \leqslant 1$ and $\left|\phi_{y}(z)\right| \leqslant 1 / 2$ for all $z=x+\mathrm{i} y \in \mathbb{C}$. The Mean Value Theorem gives $|\phi(z)-\phi(t)| \leqslant$ $|z-t| \max _{\mathbb{C}} \sqrt{\phi_{x}^{2}+\phi_{y}^{2}}$. Hence we can use Theorem 1.5 with $A=\sqrt{5} / 2$ and $R=\mathrm{e}$.

Proof of Corollary 1.7. Note that $\log \left|P_{n}(z)\right|=n \int \log |z-w| \mathrm{d} \tau_{n}(w)$. For $|z|=1+1 / n$, we let $\phi(w)=$ $\log |z-w|,|w| \leqslant 1 ; \phi(w)=(1-\log |w|) \log |1-\bar{z} w|, 1 \leqslant|w| \leqslant \mathrm{e} ;$ and $\phi(z)=0,|w| \geqslant \mathrm{e}$. Then $\left|\phi_{x}(w)\right|=$ $\mathrm{O}\left(|z-w|^{-1}\right),|w| \leqslant 1 ;\left|\phi_{x}(w)\right|=\mathrm{O}\left(|1-\bar{z} w|^{-1}\right), \quad 1 \leqslant|w| \leqslant \mathrm{e}$; and the same estimates hold for $\left|\phi_{y}\right|$. Hence $D[\phi]=\mathrm{O}\left(\iint_{|w| \leqslant 1}|z-w|^{-2} \mathrm{~d} A(w)\right)=\mathrm{O}\left(\int_{1 / n}^{1} r^{-1} \mathrm{~d} r\right)=\mathrm{O}(\log n)$, and $\omega_{\phi}(r) \leqslant r \max _{\mathbb{C}} \sqrt{\phi_{x}^{2}+\phi_{y}^{2}}=r \mathrm{O}(n)$. Let $r=1 / n^{2}$ and use (3) to obtain $|\log | P_{n}(z)|-n \log | z| |=\mathrm{O}(\sqrt{n} \log n)$.

References

[1] V.V. Andrievskii, H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer-Verlag, New York, 2002.
[2] Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997) 465-476.
[3] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002.
[4] P. Erdôs, P. Turán, On the distribution of roots of polynomials, Ann. Math. 51 (1950) 105-119.
[5] C. Favre, J. Rivera-Letelier, Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006) 311-361; Corrigendum in Math. Ann. 339 (2007) 799-801.
[6] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coëfficienten, J. Reine Angew. Math. 53 (1857) 173-175.
[7] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
[8] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.
[9] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918) $377-402$.

[^0]: E-mail address: igor@math.okstate.edu.
 URL: http://www.math.okstate.edu/~igor/.
 1 Research was partially supported by NSA, and by the Alexander von Humboldt Foundation.

