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Abstract

Schur studied limits of the arithmetic means sn of zeros for polynomials of degree n with integer coefficients and simple zeros in
the closed unit disk. If the leading coefficients are bounded, Schur proved that lim supn→∞ |sn| � 1−√

e/2. We show that sn → 0,
and estimate the rate of convergence by generalizing the Erdős–Turán theorem on the distribution of zeros. To cite this article: I.E.
Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Moyennes de nombres algébriques dans le disque unité. Schur a étudié les limites des moyennes arithmétiques sn des zéros
pour les polynômes à coefficients entiers de degré n ayant des zéros simples dans le disque unité fermé. Lorsque les coefficients
dominants restent bornés, Schur a démontré que lim supn→∞ |sn| � 1 − √

e/2. Nous prouvons que sn → 0. Nous donnons une
estimation du taux de convergence, grâce à une généralisation d’un théorème de Erdős–Turán sur la distribution des zéros. Pour
citer cet article : I.E. Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Schur’s problem and equidistribution of zeros

Let Zn(D) be the set of polynomials of degree n with integer coefficients and all zeros in the closed unit disk D.
We denote the subset of Zn(D) with simple zeros by Z

1
n(D). Given M > 0, we write Pn = anz

n + · · · ∈ Z
1
n(D,M)

if |an| � M and Pn ∈ Z
1
n(D) (respectively Pn ∈ Zn(D,M) if |an| � M and Pn ∈ Zn(D)). Schur [9, §8] studied the

limiting behavior of the arithmetic means sn of zeros for polynomials from Z
1
n(D,M) as n → ∞, where M > 0 is

an arbitrary fixed number. He showed that lim supn→∞ |sn| � 1 − √
e/2, and remarked that this lim sup is equal to

0 for monic polynomials from Zn(D) by Kronecker’s theorem [6]. We prove that limn→∞ sn = 0 for any sequence
of polynomials from Schur’s class Z

1
n(D,M), n ∈ N. This result is obtained as a consequence of the asymptotic

equidistribution of zeros near the unit circle. Namely, if {αk}nk=1 are the zeros of Pn, we define the counting measure
τn := 1

n

∑n
k=1 δαk

, where δαk
is the unit point mass at αk . Consider the normalized arclength measure μ on the unit
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circumference T, with dμ(eit ) := 1
2π

dt. If the τn converge weakly to μ as n → ∞ (τn
∗−→ μ) then limn→∞ sn =

limn→∞
∫

zdτn(z) = ∫
zdμ(z) = 0. Thus Schur’s problem is solved by the following result.

Theorem 1.1. If Pn(z) = anz
n + · · · ∈ Z

1
n(D), n ∈ N, satisfy limn→∞ |an|1/n = 1, then τn

∗−→ μ as n → ∞.

Ideas on the equidistribution of zeros date back to Jentzsch and Szegő, cf. [1, Ch. 2]. They were developed further
by Erdős and Turán [4], and many others; see [1] for history and additional references. More recently, this topic
received renewed attention in number theory, e.g. in the work of Bilu [2]. If the leading coefficients of polynomials
are bounded, then we can allow even certain multiple zeros. Define the multiplicity of an irreducible factor Q of Pn

as the integer mn � 0 such that Qmn divides Pn, but Qmn+1 does not divide Pn. If a factor Q occurs infinitely often
in a sequence Pn, n ∈ N, then mn = o(n) means limn→∞ mn/n = 0. If Q is present only in finitely many Pn, then
mn = o(n) by definition.

Theorem 1.2. Assume that Pn ∈ Zn(D,M), n ∈ N. If every irreducible factor in the sequence of polynomials Pn has
multiplicity o(n), then τn

∗−→ μ as n → ∞.

Corollary 1.3. If Pn(z) = an

∏n
k=1(z − αk), n ∈ N, satisfy the assumptions of Theorem 1.1 or 1.2, then

lim
n→∞

1

n

n∑
k=1

αm
k = 0, m ∈ N.

We also show that the norms ‖Pn‖∞ := max|z|=1 |Pn(z)| have at most subexponential growth.

Corollary 1.4. If Pn, n ∈ N, satisfy the assumptions of Theorem 1.1 or Theorem 1.2, then

lim
n→∞‖Pn‖1/n∞ = 1.

This result is somewhat unexpected, as we have no direct control of the norm or coefficients (except for the leading
one). For example, Pn(z) = (z − 1)n has norm ‖Pn‖∞ = 2n.

We now consider quantitative aspects of the convergence τn
∗−→ μ. As an application, we obtain estimates of the

convergence rate of sn to 0 in Schur’s problem. A classical result on the distribution of zeros is due to Erdős and
Turán [4]. For Pn(z) = ∑n

k=0 akz
k with ak ∈ C, let N(φ1, φ2) be the number of zeros in the sector {z ∈ C: 0 � φ1 �

arg(z) � φ2 < 2π}, where φ1 < φ2. Erdős and Turán [4] proved that∣∣∣∣N(φ1, φ2)

n
− φ2 − φ1

2π

∣∣∣∣ � 16

√
1

n
log

‖Pn‖∞√|a0an| . (1)

The constant 16 was improved by Ganelius, and ‖Pn‖∞ was replaced by weaker integral norms by Amoroso
and Mignotte; see [1] for more history and references. Our main difficulty in applying (1) to Schur’s problem
is the absence of an effective estimate for ‖Pn‖∞, Pn ∈ Z

1
n(D,M). We prove a new “discrepancy” estimate

via energy considerations from potential theory. These ideas originated in part in the work of Kleiner, and were
developed by Sjögren and Hüsing, see [1, Ch. 5]. We also use the Mahler measure of a polynomial Pn(z) =
an

∏n
k=1(z − αk), defined by M(Pn) := exp( 1

2π

∫ 2π

0 log |Pn(eit )|dt). Note that M(Pn) = limp→0 ‖Pn‖p , where

‖Pn‖p := ( 1
2π

∫ 2π

0 |Pn(eit )|p dt)1/p, p > 0. Jensen’s formula readily gives M(Pn) = |an|∏n
k=1 max(1, |αk|) [3, p. 3].

Hence M(Pn) = |an| � M for any Pn ∈ Zn(D,M).

Theorem 1.5. Let φ : C → R satisfy |φ(z) − φ(t)| � A|z − t |, z, t ∈ C, and supp(φ) ⊂ {z: |z| � R}. If Pn(z) =
an

∏n
k=1(z − αk) is a polynomial with integer coefficients and simple zeros, then∣∣∣∣∣1

n

n∑
k=1

φ(αk) −
∫

φ dμ

∣∣∣∣∣ � A(2R + 1)

√
log max(n,M(Pn))

n
, n � 55. (2)
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This theorem is related to recent results of Favre and Rivera-Letelier [5], obtained in a different setting. Choosing
φ appropriately, we obtain an estimate of the means sn in Schur’s problem.

Corollary 1.6. If Pn ∈ Z
1
n(D,M) then∣∣∣∣∣1

n

n∑
k=1

αk

∣∣∣∣∣ � 8

√
logn

n
, n � max(M,55).

We also have an improvement of Corollary 1.4 for Schur’s class Z
1
n(D,M).

Corollary 1.7. If {Pn}∞n=1 ∈ Z
1
n(D,M) then there is some c > 0 such that ‖Pn‖∞ � ec

√
n logn as n → ∞.

The proof of Theorem 1.5 gives a result for arbitrary polynomials with simple zeros, and for any continuous φ

with finite Dirichlet integral D[φ] = ∫∫
(φ2

x + φ2
y)dA. Moreover, all arguments may be extended to general sets of

logarithmic capacity 1, e.g. to [−2,2]. Using the characteristic function φ = χE , we can prove general discrepancy
estimates on arbitrary sets, and obtain an Erdős–Turán-type theorem. Our results have a number of applications to the
problems on integer polynomials considered in [3].

2. Proofs

Proof of Theorem 1.1. Observe that the discriminant Δ(Pn) := a2n−2
n

∏
1�j<k�n(αj − αk)

2 is an integer, as a
symmetric form in the zeros of Pn. Since Pn has simple roots, we have Δ(Pn) 	= 0 and |Δ(Pn)| � 1. Using weak
compactness, we assume that τn

∗−→ τ, where τ is a probability measure on D. Let KM(x, t) := min(− log |x − t |,M).

Since τn × τn
∗−→ τ × τ, we obtain for the energy of τ that

I [τ ] := −
∫∫

log |x − t |dτ(x)dτ(t) = lim
M→∞

(
lim

n→∞

∫∫
KM(x, t)dτn(x)dτn(t)

)

= lim
M→∞

(
lim

n→∞

(
1

n2

∑
j 	=k

KM(αj ,αk) + M

n

))
� lim

M→∞

(
lim inf
n→∞

1

n2

∑
j 	=k

log
1

|αj − αk|
)

= lim inf
n→∞

1

n2
log

|an|2n−2

Δ(Pn)
� lim inf

n→∞
1

n2
log |an|2n−2 = 0.

Thus I [τ ] � 0. But I [ν] > 0 for any probability measure ν on D, except for μ [7]. Hence τ = μ. �
Proof of Theorem 1.2. Let φ ∈ C(C). Note that for any ε > 0 there are finitely many irreducible factors Q in
the sequence Pn such that |∫ φ dτ(Q) − ∫

φ dμ| � ε, where τ(Q) is the zero counting measure for Q. Indeed, if
we have an infinite sequence of such Qm, then deg(Qm) → ∞, as there are only finitely many Qm ∈ Zn(D,M)

of bounded degree. Hence
∫

φ dτ(Qm) → ∫
φ dμ by Theorem 1.1. Let the number of such exceptional fac-

tors Qm be N . Then we have |n ∫
φ dτn − n

∫
φ dμ| � No(n)maxD |φ − ∫

φ dμ| + (n − N)ε, n ∈ N. Hence
lim supn→∞ | ∫ φ dτn − ∫

φ dμ| � ε, and limn→∞
∫

φ dτn = ∫
φ dμ after letting ε → 0. �

Proof of Corollary 1.3. Let φ(z) = zm and write limn→∞
∫

zm dτn(z) = ∫
zm dμ(z) = 0. �

Proof of Corollary 1.4. Let ‖Pn‖∞ = |Pn(zn)|, zn ∈ D, and assume limn→∞ zn = z0 ∈ D by compactness.
Then ‖Pn‖∞ = exp(log |Pn(zn)|) = |an| exp(n

∫
log |zn − t |dτn(t)). Since τn

∗−→ μ, Theorem I.6.8 of [8] gives

lim supn→∞ ‖Pn‖1/n∞ � exp(
∫

log |z0 − t |dμ(t)) = 1 [8, p. 22]. But ‖Pn‖∞ � |an| � 1, see [1, p. 16]. �
Proof of Theorem 1.5. Given r > 0, define the measures νr

k with dνr
k (αk + reit ) = dt/(2π), t ∈ [0,2π). Let τ r

n :=
1
n

∑n
k=1 νr

k , and estimate | ∫ φ dτn − ∫
φ dτ r

n | � 1
n

∑n
k=1

1
2π

∫ 2π

0 |φ(αk) − φ(αk + reit )|dt � ωφ(r), where ωφ(r) :=
sup|z−ζ |�r |φ(z) − φ(ζ )| is the modulus of continuity of φ.
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Let pν(z) := − ∫
log |z − t |dν(t) be the potential of a measure ν. A direct evaluation gives that pνr

k
(z) =

− log max(r, |z − αk|) and pμ(z) = − log max(1, |z|) [8, p. 22]. Consider σ := τ r
n − μ, σ(C) = 0. One com-

putes (or see [8, p. 92]) that dσ = − 1
2π

(∂pσ /∂n+ + ∂pσ /∂n−)ds, where ds is the arclength on supp(σ ) = {|z| =
1} ∪ (

⋃n
k=1{|z − αk| = r}), and n± are the inner and the outer normals. We now use Green’s identity

∫∫
G

u�v dA =∫
∂G

u ∂v
∂n

ds − ∫∫
G

∇u · ∇v dA with u = φ and v = pσ in each component G of {|z| < R} \ supp(σ ). Since �pσ = 0
in G, adding the identities for all G, we obtain that∣∣∣∣

∫
φ dσ

∣∣∣∣ = 1

2π

∣∣∣∣
∫∫
|z|�R

∇φ · ∇pσ dA

∣∣∣∣ � 1

2π

√
D[φ]√D[pσ ],

where D[φ] = ∫∫
(φ2

x + φ2
y)dA is the Dirichlet integral of φ. It is known that D[pσ ] = 2πI [σ ] [7, Thm 1.20],

where I [σ ] = − ∫∫
log |z − t |dσ(z)dσ(t) = ∫

pσ dσ . Since pμ(z) = − log max(1, |z|), we observe that
∫

pμ dμ = 0,

so that I [σ ] = ∫
pτr

n
dτ r

n − 2
∫

pμ dτ r
n . Further, − ∫

pμ dτ r
n = ∫

log max(1, |z|)dτ r
n(z) � (

∑
|αk |�1+r log(1 + 2r) +∑

|αk |>1+r log |αk|)/n � log(1 + 2r) + 1
n

logM(Pn) − 1
n

log |an|. We also have that
∫

pτr
n

dτ r
n � (−∑

j 	=k log |αj −
αk| − n log r)/n2. We next combine the energy estimates to obtain

I [σ ] � 2

n
logM(Pn) − 1

n2
log

∣∣a2
nΔ(Pn)

∣∣ − 1

n
log r + 4r.

Collecting all estimates, we proceed with | ∫ φ dτn − ∫
φ dμ| � | ∫ φ dτn − ∫

φ dτ r
n | + | ∫ φ dτ r

n − ∫
φ dμ| � ωφ(r) +√

D[φ]√D[pσ ]/(2π) = ωφ(r) + √
D[φ]√I [σ ]/(2π). Thus we arrive at the main inequality:∣∣∣∣

∫
φ dτn −

∫
φ dμ

∣∣∣∣ � ωφ(r) +
√

D[φ]
2π

(
2

n
logM(Pn) − 1

n2
log

∣∣a2
nΔ(Pn)

∣∣ − 1

n
log r + 4r

)1/2

. (3)

Note that D[φ] � 2πR2A2, as |φx | � A and |φy | � A a.e. in C. Also, ωφ(r) � Ar. Since |Δ(Pn)| � 1 and |an| � 1,
we have |a2

nΔ(Pn)| � 1. Hence (2) follows from (3) by letting r = 1/max(n,M(Pn)). �
Proof of Corollary 1.6. Since Pn has real coefficients, we have that sn = ∫

zdτn(z) = ∫ �(z)dτn(z). We let
φ(z) = �(z), |z| � 1; φ(z) = �(z)(1 − log |z|), 1 � |z| � e; and φ(z) = 0, |z| � e. An elementary computation
shows that |φx(z)| � 1 and |φy(z)| � 1/2 for all z = x + iy ∈ C. The Mean Value Theorem gives |φ(z) − φ(t)| �
|z − t |maxC

√
φ2

x + φ2
y . Hence we can use Theorem 1.5 with A = √

5/2 and R = e. �
Proof of Corollary 1.7. Note that log |Pn(z)| = n

∫
log |z − w|dτn(w). For |z| = 1 + 1/n, we let φ(w) =

log |z − w|, |w| � 1; φ(w) = (1 − log |w|) log |1 − z̄w|, 1 � |w| � e; and φ(z) = 0, |w| � e. Then |φx(w)| =
O(|z − w|−1), |w| � 1; |φx(w)| = O(|1 − z̄w|−1), 1 � |w| � e; and the same estimates hold for |φy |. Hence

D[φ] = O(
∫∫

|w|�1 |z − w|−2 dA(w)) = O(
∫ 1

1/n
r−1 dr) = O(logn), and ωφ(r) � r maxC

√
φ2

x + φ2
y = rO(n). Let

r = 1/n2 and use (3) to obtain | log |Pn(z)| − n log |z|| = O(
√

n logn). �
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