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Abstract

We introduce a new measure of dependence between the components of a symmetric α-stable random vector that we call the
signed symmetric covariation coefficient. We show that this coefficient satisfies the properties of the classical Pearson coefficient.
Moreover, we show that in the case of sub-Gaussian random vectors, this coefficient coincide with the association parameter and
the generalized association parameter. To cite this article: B. Garel, B. Kodia, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Coefficient de covariation symétrique signé pour une modélisation de la dépendance alpha-stable. On introduit ici une
nouvelle mesure de dépendance entre les composantes d’un vecteur aléatoire α-stable symétrique appelé coefficient de covariation
symétrique signé. On montre que ce coefficient satisfait les propriétés du coefficient de corrélation classique. De plus, on montre que
dans le cas des vecteurs alétoires sous-gaussiens, ce coefficient coïncide avec le paramètre d’association et la version généralisée
de ce paramètre appelée gap. Pour citer cet article : B. Garel, B. Kodia, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Trouver une mesure de dépendance appropriée est un problème récurrent lorsqu’on procède à une modélisation
utilisant des lois stables non-gaussiennes. En effet, de telles distributions ne possèdent pas de moments d’ordre 2 et,
comme conséquence immédiate, le concept de matrice de corrélation, qui permet de capter la structure de dépendence
d’un vecteur aléatoire, n’a plus de sens. Il est donc nécessaire de définir d’autres coefficients de dépendance basés sur
des moments plus petits que 2. Dans cette note, nous commençons par passer en revue quelques définitions de base
et propriétés des vecteurs aléatoires α-stables. Nous présentons ensuite les mesures de dépendance utilisées jusqu’à
présent pour définir la dépendance entre composantes d’un vecteur aléatoire α-stable symétrique. Nous introduisons
un nouveau coefficient de dépendance que nous appelons coefficient de covariation symétrique signé. Ce coefficient,
basé sur la covariation introduite par Miller [5], est donné par l’expression
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scov(X1,X2) = κ(X1,X2)

∣∣∣∣ [X1,X2]α[X2,X1]α
‖X1‖α

α‖X2‖α
α

∣∣∣∣
1/2

,

où [X1,X2]α définie par la relation (6) désigne la covariation de X1 sur X2, ‖ · ‖α est la norme de la covariation,
κ(X1,X2) est définie par (18), X1 et X2 étant des variables aléatoires symétriques α-stables avec α > 1. De manière
générale, ce coefficient a des propriétés similaires au coefficient de corrélation classique (Proposition 3.2). Dans la
Proposition 4.3 on montre que dans le contexte des vecteurs aléatoires sous-gaussiens, ce coefficient coïncide avec le
paramètre d’association introduit par Press [6] et le paramètre d’association généralisé proposé par Paulauskas [7].

1. Introduction

Many types of physical phenomena and financial data exhibit a very high variability and stable distributions are
often used for their modeling. Since the seminal work of Mandelbrot (1960) who suggested the stable laws as possible
models for the distributions of income and speculative prices, the interest in these laws greatly increased and now they
are widely used in telecommunications and many other fields such as physics, biology, genetic and geology (Uchaikin
and Zolotarev [9]).

Stable distributions are a rich class of probability distributions that include the Gaussian, Cauchy and Lévy distri-
butions in a family that allows skewness and heavy tails. These laws, characterized by Paul Lévy (1924), are the only
possible limiting laws for sums of independent, identically distributed random variables. While they present many
attractive theoretical properties, a major problem in working with stable laws, both univariate and multivariate, is that
except the three laws mentioned before, their densities cannot be written in a closed form. The only available informa-
tion for a stable random vector is its characteristic function. Added to this drawback, the well-known problem that the
stable non-Gaussian random vectors do not possess moments of second order limited their use. The concept of corre-
lation matrix which allows to understand the association between the coordinates of a random vector, is meaningless
here. Therefore we need other coefficients of dependence based on moments of order less than two.

Press [6] proposed an extended notion of correlation coefficient applicable to a family of symmetric multivariate
stable laws so-called association parameter (a.p.). Then Paulauskas [7] proposed the generalized association parameter
(gap). Kanter and Steiger [4] showed that, under some conditions, the conditional expectation of a stable variable given
another one is linear. After that, Miller [5] and Cambanis and Miller [1] proposed a new dependence measure called
covariation. The constant of linearity of conditional expectation has been expressed by means of this measure and
then called the covariation coefficient. Garel et al. [3] introduced the symmetric covariation. In this Note we propose
an other coefficient based on covariation that we call signed symmetric covariation coefficient and we show that in the
case of sub-Gaussian random vectors, this new coefficient coincides with the association parameter and the gap.

This note is organized as follow: Section 2 is devoted to a reminder of basic definitions and some properties of
stable random vectors, the dependence measures and the above mentioned coefficients. In Section 3, we introduce the
signed symmetric covariation coefficient and we give its first properties. Other properties of this new coefficient are
discussed in the context of sub-Gaussian random vectors in Section 4.

2. Review of bivariate alpha-stable random vectors and coefficients of dependence

For our purposes it is convenient to define stable random variables and vectors by means of their characteristic
function.

Definition 2.1. A random variable X is said to have a stable distribution if there are parameters 0 < α � 2, γ � 0,
−1 � β � 1, and δ real such that its characteristic function has the following form:

E exp iθX = exp
{−γ α|θ |α[

1 + iβ sign(θ)w(θ,α)
] + iδθ

}
, (1)

where

w(θ,α) =

⎧⎪⎨
⎪⎩

− tan
πα

2
if α �= 1,

2
ln |θ | if α = 1,
π
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and

sign(θ) =
⎧⎨
⎩

1 if θ > 0,

0 if θ = 0,
−1 if θ < 0.

The parameter α is called the characteristic exponent or the index of stability, β is a measure of skewness, γ is a
scale parameter, and δ is a location parameter. We will use the notation X ∼ Sα(γ,β, δ). When β = δ = 0, X is said
symmetric α-stable (SαS, which means that X and −X have the same distribution) and its characteristic function
takes the particular simple form:

E exp iθX = exp
{−γ α|θ |α}

. (2)

The following theorem extend to R
2 the definition of a stable random variable:

Theorem 2.2. Let 0 < α < 2. Then X = (X1,X2) is an α-stable random vector in R
2 if and only if there exists a finite

measure � on the unit circle S2 = {s ∈ R
2: ‖s‖ = 1} and a vector δ such that for all θ ∈ R

2

E exp
(
i(θ ,X)

) = exp

{
−

∫
S2

∣∣(θ , s)
∣∣α[

1 + i sign(θ , s)w
(
(θ , s), α

)]
�(ds) + i(θ , δ)

}
. (3)

Here (θ , s) denotes the canonical inner product of R
2. The measure � is called spectral measure of the α-stable

random vector X and the pair (�, δ) is unique. The vector X is symmetric if and only if δ = 0 and � is a symmetric
measure on S2. In this case, its characteristic function is given by

E exp
{
i(θ ,X)

} = exp

{
−

∫
S2

∣∣(θ , s)
∣∣α�(ds)

}
. (4)

For any vector u ∈ R
2 the projection (u,X) = ∑2

k=1 ukXk has an univariate α-stable distribution Sα(γu, βu, δu). The
spectral measure determines the projection parameter function γ (u) by:

γ α(u) = γ α(u1, u2) =
∫
S2

∣∣(u, s)
∣∣α�(ds). (5)

Unless otherwise indicated, for the remainder of the note we are working with symmetric α-stable random vectors
with α > 1.

The covariation, introduced by Miller (1978), is defined as follows:

Definition 2.3. Let X1 and X2 be jointly SαS with α > 1 and let � be the spectral measure of the random vector
X = (X1,X2). The covariation of X1 on X2 is the real number

[X1,X2]α =
∫
S2

s1s
〈α−1〉
2 �(ds), (6)

with a〈p〉 = |a|p sign(a) is called signed power.

This definition is equivalent to:

[X1,X2]α = 1

α

∂γ α(θ1, θ2)

∂θ1

∣∣∣∣
θ1=0, θ2=1

, (7)

where θ1 and θ2 are real numbers and γ (θ1, θ2) is the scale parameter of the random variable Y = θ1X1 + θ2X2. It
is well known that although the covariation is linear in its first argument, it is, in general, not linear in its second
argument and not symmetric in its arguments. We also have

[X1,X1]α =
∫

|s1|α�(ds) = γ α
X1

. (8)
S2
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We denote

‖X1‖α = ([X1,X1]α
)1/α = γX1, (9)

where γX1 is the scale parameter of the SαS random variable X1. Then ‖ · ‖α defines a norm called covariation
norm. When X1 and X2 are independent, [X1,X2]α = 0. Proofs of these properties and other details are given in
Samorodnitsky and Taqqu [8, pp. 87–97].

The following lemma establishes an important result which shows how the covariation [X1,X2]α is related to the
joint moment EX1X

〈p−1〉
2 :

Lemma 2.4. Let (X1,X2) be SαS with α > 1. Then for all 1 � p < α,

EX1X
〈p−1〉
2

E|X2|p = [X1,X2]α
‖X2‖α

α

. (10)

Proof. The demonstration is detailed in d’Estampes [2, pp. 35–37]. �
The covariation coefficient of X1 on X2 is the quantity:

λX1,X2 = [X1,X2]α
‖X2‖α

α

. (11)

It is the coefficient of the linear regression E(X1|X2). This coefficient is not symmetric and may be unbounded. The
symmetric coefficient of covariation between X1 and X2 is given by:

Corrα(X1,X2) = λX1,X2λX2,X1 = [X1,X2]α[X2,X1]α
‖X1‖α

α‖X2‖α
α

. (12)

This coefficient is symmetric, bounded and vanishes when X1 and X2 are independent (Garel et al. [3]).
Press [6] proposed a measure of association between coordinates of a bivariate symmetric stable vector. For a

bivariate stable vector with characteristic function

E exp
(
i(θ ,X)

) = exp

{
−

m∑
i=1

(θ�iθ
′)α/2

}

= exp

{
−

m∑
i=1

(
w11(i)θ

2
1 + 2w12(i)θ1θ2 + w22(i)θ

2
2

)α/2

}
, (13)

with �i , i = 1, . . . ,m, a 2 × 2 symmetric positive semidefinite matrix, the association parameter (a.p.) ρ is defined as
follows:

ρ =
∑m

i=1 w12(i)

[(∑m
i=1 w11(i))(

∑m
i=1 w22(i))]1/2

. (14)

It is shown that for α = 2 the a.p. coincides with the ordinary correlation coefficient of the bivariate Gaussian random
vector and for 0 < α < 2 the a.p. possesses all the properties of a correlation coefficient. But since the expression (13)
does not represent all symmetric stable bivariate distributions, Paulauskas [7] introduced another concept, which on
the one hand, would be applicable to all symmetric stable random vector in R

2 and on the other hand would have all
the properties as ρ.

Let (X1,X2) be SαS, 0 < α � 2 and � its spectral measure on the unit circle S2. Let (U1,U2) be a random vector
on S2 with probability distribution �̃ = �/�(S2). Because of the symmetry of �, one has EU1 = EU2 = 0. The
generalized association parameter (gap) was defined by Paulauskas as:

ρ̃ = EU1U2

(EU2
1 EU2

2 )1/2
. (15)

It is a measure of dependence for (X1,X2). For a bivariate stable vector with characteristic function (4) the gap ρ̃ has
the following properties valid for all 0 < α � 2:
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(i) always −1 � ρ̃ � 1 and if a distribution corresponds to a random vector with independent coordinates, then
ρ̃ = 0;

(ii) |ρ̃| = 1 if and only if the distribution is concentred on a line;
(iii) for α = 2, ρ̃ coincides with the correlation coefficient of the Gaussian random vector;
(iv) ρ̃ is independent of α and depends only on the spectral measure �;
(v) if the characteristic function of (X1,X2) is given by

ϕ(t) = exp
{−C

(
γ 2

1 t2
1 + 2rγ1γ2t1t2 + γ 2

2 t2
2

)α/2}
, (16)

where C is an appropriate constant, then r is the gap.

3. Signed symmetric covariation coefficient and its properties

We now introduce our new measure of dependence.

Definition 3.1. Let (X1,X2) be a bivariate SαS random vector with α > 1. The signed symmetric covariation coeffi-
cient between X1 and X2 is the quantity:

scov(X1,X2) = κ(X1,X2)

∣∣∣∣ [X1,X2]α[X2,X1]α
‖X1‖α

α‖X2‖α
α

∣∣∣∣
1/2

, (17)

where

κ(X1,X2) =

⎧⎪⎪⎨
⎪⎪⎩

sign
([X1,X2]α

)
if

∣∣∣∣ [X1,X2]α
‖X2‖α

α

∣∣∣∣ �
∣∣∣∣ [X2,X1]α

‖X1‖α
α

∣∣∣∣,
sign

([X2,X1]α
)

if

∣∣∣∣ [X1,X2]α
‖X2‖α

α

∣∣∣∣ <

∣∣∣∣ [X2,X1]α
‖X1‖α

α

∣∣∣∣.
(18)

So κ(X1,X2) denotes the sign of the coefficient of covariation which has the greatest absolute value. Using equality
(10) with p = 1, we see that this coefficient can be expressed by:

scov(X1,X2) = κ(X1,X2)

∣∣∣∣ (EX1sign(X2))(EX2sign(X1))

E|X1|E|X2|
∣∣∣∣
1/2

. (19)

This last expression will give us a way to estimate the signed symmetric covariation coefficient without knowing the
value of α.

Proposition 3.2. Let (X1,X2) be a bivariate SαS random vector with α > 1. The signed symmetric covariation
coefficient has the following properties:

(i) −1 � scov(X1,X2) � 1 and if X1, X2 are independent, then scov(X1,X2) = 0;
(ii) for all a �= 0, |scov(X,aX)| = 1;

(iii) let a and b two non-zero reals, X1 and X2 such that [X1,X2]α �= 0 and [X2,X1]α �= 0, then scov(aX1, bX2) =
±scovα(X1,X2);

(iv) for α = 2, scov(X1,X2) coincides with the usual correlation coefficient.

Note that if | [aX1,bX2]α‖bX2‖α
α

| � | [bX2,aX1]α‖aX1‖α
α

| and |a| � |b| then κ(aX1,bX2) = sign(ab)sign([X1,X2]α) and κ(X1,X2) =
sign([X1,X2]α). It implies that

scov(aX1, bX2)

{
scov(X1,X2) if a and b have the same sign,

−scov(X1,X2) if not.

The other cases can be obtained in a similar way.
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4. Signed symmetric covariation coefficient in sub-Gaussian case

We begin this section by the definition of a sub-Gaussian random vector.

Definition 4.1. Let 0 < α < 2, let G1, G2 be zero mean jointly normal random variables and let A be a positive random
variable such that A ∼ Sα/2((cos πα

4 )2/α,1,0), independent of (G1,G2), then X = A1/2G = (A1/2G1,A
1/2G2) is a

sub-Gaussian random vector with underlying Gaussian vector G = (G1,G2).

The characteristic function of X is given by:

E exp

{
i

2∑
k=1

θkXk

}
= exp

{
−

∣∣∣∣∣1

2

2∑
i=1

2∑
j=1

θiθjRij

∣∣∣∣∣
α/2}

, (20)

where Rij = EGiGj , i, j = 1,2, are the covariances of the underlying Gaussian random vector G (Samorodnitsky
and Taqqu, [8, p. 78]).

Before proving that, in this context, the gap of Paulauskas, the a.p. of Press and the signed symmetric covariation
coefficient coincide, we first establish the following lemma:

Lemma 4.2. Let 0 < α < 2 and X as in Definition 4.1. Then the gap of and the a.p. between the components of X
coincide with the correlation coefficient between the components of G.

Proposition 4.3. Let 1 < α < 2 and X as in Definition 4.1. Then the signed symmetric covariation coefficient between
the components of X coincides with the gap and the a.p. between the components of the same vector.

Property 4.4. Let 1 < α < 2 and X as in Definition 4.1. If |scov(X1,X2)| = 1 then the distribution of X is concentrated
on a line.
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