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Abstract

We construct finite families of SL2(R) elements that are arbitrary close to identity and such that the corresponding Hecke
operator, acting by Moebius transformation, has a uniform spectral gap (in a suitably restricted sense). This provides finite systems
of monotone transformations of the interval [0,1] with the expansion property. Combined with the approach from Dvir and Shpilka
(2008), we obtain a solution to the “dimension expander” problem from Wigderson (2004). To cite this article: J. Bourgain, C. R.
Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Expanseurs et expansion dimensionnelle. On construit une famille finie d’éléments de SL2(R), arbitrairement proches de
l’identité, telle que l’opérateur de Hecke associé agissant par transformation de Moebius ait un trou spectral uniforme (en un sense
restreint approprié).

Cela donne des systèmes finis de transformations monotones de l’intervalle ayant la propriété d’expansion. Ensuite, par l’ap-
proche de Dvir et Shpilka (2008), on obtient une solution au problème de Wigderson (2004) sur “l’expansion dimensionnelle”.
Pour citer cet article : J. Bourgain, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On construit des familles de transformations linéaires T1, . . . , Tk de F
n (F un corps arbitraire et n → ∞) telles que

pour tout sous-espace W de F
n, dim W � n

2 , on ait

dim

(
W +

k∑
i=1

TiW

)
� (1 + ε)dimW

où ε > 0 et une constante et k borné (indépendamment de n).
Le point de départ est l’approche de [3] ramenant la question à celle de produire un système de transformations

monotones de {1, . . . , n} ayant une propriété d’expansion. Pour g ∈ SL2(R), soit ḡ(x) = ax+b
cx+d

la transformation de
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Moebius et ρgf = (g′) 1
2 (f ◦ ḡ) la représentation unitaire correspondante. On résout le problème en montrant que

pour toute ε > 0, il existe un sous-ensemble fini G de SL2(R), tel que ‖1 − g‖ < ε pour g ∈ G et l’opérateur de Hecke
associé T = 1

2|G|
∑

g∈G (ρg + ρg−1) vérifie

‖Tf ‖2 � 1

2
‖f ‖2

si f ∈ L2(R), suppf ⊂ [0,1] et tel que
∫ k/K

k−1/K
f (x)dx = 0 pour 1 � k � K , où K ∈ Z+ depend de ε. La méthode

est voisine de celle de [1] pour SU(2). L’étape finale (due à [5]) est effectuée ici par un argument plus général ayant
d’autres applications.

1. Introduction and main statements

Let F be a field, ε > 0 and V a vector space of dimension n over F. Following [8,4,3], a family T1, . . . , Tk of
F-linear transformations from V to V is called an ε-dimension expander if for every subspace W of V , dimW � n

2 ,

dim

(
W +

k∑
i=1

TiW

)
� (1 + ε)dimW. (1)

In [8] the problem was posed of producing explicit ε-dimension expanders of arbitrary large dimension. For fields
of characteristic zero, the question was settled in [4] using property τ ; their work left open the case of finite fields.
Particularly relevant to this discussion is the contribution from [3] and we rely on their approach. Identifying V

and Fn, their method is roughly as follows. Let ϕ1, . . . , ϕk be a family of monotone increasing transformations of
{1, . . . , n} i.e. ϕ(x) � ϕ(y) if x > y. To each map ϕ, we associate a linear transformation Tϕ of F

n defining

Tϕ

(
n∑

i=1

xiei

)
=

∑
xieϕ(i). (2)

As shown in [3], expander properties of {ϕ1, . . . , ϕk} imply dimension expansion for the resulting system
{Tϕ1, . . . , Tϕk

} of linear maps. Using shift maps, a dimension expander is produced in [3] involving k ∼ logn lin-
ear maps. This is the best that may be achieved by shifts alone and different systems are needed to get k bounded
independently of n. The missing ingredient is provided by the following.

Theorem 1. There is c0 > 0 and a explicit finite family Ψ of smooth increasing maps ψ : [0,1] → [0,1] such that for
any measurable subset A of [0,1], |A| < 1

2 ,

max
ψ∈Ψ

∣∣ψ(A)\A∣∣ � c0|A|. (3)

We proceed then as follows. To each ψ ∈ Ψ we associate a transformation ϕ of {1, . . . , n} defining ϕ(i) = [nψ( i
n
)]

for 1 � i � n ([x] denoting the integer part of x ∈ R+). Clearly ϕ is monotonically increasing. We add to this family
the 1-shift ϕ0{

ϕ0(i) = i + 1 if 1 � i < n,

ϕ0(n) = n.

Denote Φ the resulting system of maps. Let then D ⊂ {1, . . . , n}, |D| < n
2 and let D′ = D ∪ ⋃

ϕ∈Φ ϕ(D). Follow-
ing [3], we need to show that

|D′| � (1 + ε)|D| (4)

for some ε > 0. Suppose (4) fails. Since by construction ψ( i
n
) ∈ 1

n
ϕ(i) + [0, 1

n
], we have ψ(D

n
) ⊂ 1

n
D′ + [0, 1

n
] and

ψ(A) ⊂ 1
n
D′ + [− c

n
, c

n
] with A = 1

n
D + [0, 1

n
] and c = 1 + maxψ∈Ψ |ψ ′|∞. Therefore∣∣ψ(A)\A∣∣ � 1

n

(
D + [−c, c])\(D + [0,1]) + 1

n
(2c + 1)|D′\D|

1

n
(2c + 1)

(∣∣ϕ0(D)\D∣∣ + |D′\D|) + 0

(
1

n

)
< 0(ε)|A|

which is in violation of (3).
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Theorem 1 will be derived from a spectral gap property for certain elements of SL2(R). We believe this result is
new and of independent interest.

Recall the action of an element g = (
a b
c d

) ∈ SL2(R) on R ∪ {∞} by Moebius transformation ḡ(x) = ax+b
cx+d

. Since

(ḡ)′(x) = 1
(cx+d)2 > 0, ḡ is increasing on any interval not containing − d

c
.

Theorem 1 is easily derived from

Theorem 2. For any ε > 0, there is a finite subset G of SL2(R) and K ∈ Z+ with the following properties

‖1 − g‖ < ε for g ∈ G (5)

and

max
g∈G

‖f − f ◦ ḡ‖2 >
1

2
(6)

for any function f ∈ L2(R), suppf ⊂ [0,1] such that ‖f ‖2 = 1 and

k/K∫
(k−1)/K

f (x)dx = 0 for all 1 � k � K.

Let ϕ be the unitary representation of SL2(R) on L2(R) defined by

ϕg−1f = (ḡ′)1/2(f ◦ ḡ). (7)

Since ‖1 − (ḡ)′‖∞ = 0(ε) on bounded sets, (6) will follow from〈∑
g

ν(g)ρgf,f

〉
<

1

2
(8)

with ν = 1
2|G|

∑
g∈G (δg + δg−1) the symmetric probability measure on SL2(R).

Statement (8) for functions f satisfying the condition in (6) is what we referred to as a “restricted” spectral gap
property. The proof of (8) for a suitable family G introduced in the next section will rely on similar arguments as in [1]
in the SU(2)-context and not on hyperbolicity.

2. Construction of certain free elements in SL2(R)

The set G in Theorem 2 is provided by

Lemma 1. Given ε > 0, there is Q ∈ Z+ and G ⊂ SL2(R) ∩ ( 1
Q

Mat2(Z)) satisfying

1

ε
< Q <

(
1

ε

)c1

, (9)

|G| > Qc2 , (10)

the elements of G are free generators of a free group, (11)

‖g − 1‖ < ε for g ∈ G. (12)

Sketch of proof. A way to proceed is as follows. Start with the elements g1 = ( 1 1
q

0 1

)
and g2 = ( 1 0

1
q

1

)
and apply

Breuillard’s result [2] on the uniform Tits alternative. Since 〈g1, g2〉 contains the free group 〈gq

1 , g
q

2 〉, there are words
h1, h2 ∈ Wr(g1, g2), r ∈ Z an absolute constant, generating a free group. Taking � ∼ log 1

ε
, let F ⊂ W�(h1, h2) be

a set of free elements such that log |F | ∼ �. Note also that

‖g‖,∥∥g−1
∥∥ �

(
1 + 1

)r�

= β for g ∈ F . (13)

q



360 J. Bourgain / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 357–362
Covering the ball B(1, β) ⊂ Mat2 by balls of radius εβ−1, we may find g0 ∈ F such that |F ′| = |F ∩ B(g0, εβ
−1)| >

(εβ−2)4|F | > |F | 1
2 (take q > q(r) and � > C log 1

ε
). The family G = g−1

0 .(F ′\{g0}) satisfies the required properties
with Q = q2r�. �

Since Wk(G) ⊂ Q−k Mat2(Z), distinct elements of Wk(G) are at least Q−k-apart. From Kesten’s bound in the free
group FG , we have

max
g

ν(k)(g) �
(√

2|G| − 1

|G|
)k

(14)

for the k-fold convolution ν(k) of ν introduced above.

3. Proof of Theorem 2 (I)

This part of the argument is closely related to [1]. Recall that

ν = 1

2|G|
∑
g∈G

(δg + δg−1).

Let Pδ , δ > 0 be an approximate identity on SL2(R). The main statement is the following

Lemma 2. Given τ > 0, we have∥∥ν(�) ∗ Pδ

∥∥∞ < δ−τ (15)

provided

� > C3(τ )
log(1/δ)

logQ
(16)

and assuming δ small enough (depending on Q and τ ).

Here ‖ ‖∞ stands for the L∞-norm on SL2(R).
The proof of Lemma 2 is similar to its analogue for SU(2) (cf. [1]) and relies on techniques from arithmetic

combinatorics. Note that the analogy is not surprising as SL2(R) and SU(2) have the same Lie-algebra, up to com-
plexification.

Start by taking �0 s.t. Q−�0 > δ > Q−2�0 . Then μ = ν(�0)∗Pδ satisfies by (14), (10) ‖μ‖∞ � δ−3|G|− 1
2 �0 < δ−3+c4 .

One shows then that for r > r(τ), the convolution μ(r) satisfies (15). The key ingredient is the “L2-flattening” principle
(see [1], Prop. 2.2). Let μ = ν(�) ∗ Pδ , �0 � � � �0 satisfy for some γ > 0

δ−γ < ‖μ‖2 < δ− 3
2 +γ . (17)

Then for some σ = σ(γ ) > 0

‖μ ∗ μ‖2 < δσ ‖μ‖2. (18)

We briefly review the different steps of the proof with reference to [1].

(i) Assume (18) fails. We apply the Balog–Szemeredi–Gowers theorem in SL2(R), which is a “locally reasonable
metric group” (in the sense of [6,7]). Application of [6], Theorem 6.10, with K = SL2(R) ∩ B

(
1, (1 + ε)�

)
and

K = δ−o(1) gives an “approximative group” H ⊂ SL2(R) such that μ(xH) > δ−o(1) for some x ∈ SL2(R).
(ii) Construction of a large set of traces (see [1], Lemma 5.2).

(iii) Construction of a large set of simultaneously diagonalizable elements ([1], Lemma 5.1).
(iv) Amplification of the trace set. See [1], Lemma 5.4 based on the “discretized ring theorem” (which is the under-

lying scalar sum-product amplification).
(v) From [1], Corollary 5.2, it follows that the metric entropy N (H (s), δ) > δ−c N (H, δ) for some s ∈ Z+ and

c = c(γ ) > 0. But this contradicts the fact that H is an approximative group.

Note that in what follows we will apply Lemma 2 for a specific, sufficiently small value of τ .
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4. Proof of Theorem 2 (II)

The final step in proving the expansion for SU(2) in [1] is an argument due to Sarnak and Xue from representation
theory (see [5]). What follows is an alternative and quite general approach (see also Section 5).

Let f be as in (6) and assume (8) fails. Let f = ∑∞
k=0 �kf be Littlewood–Paley decomposition, i.e. |λ| ∼ 2k for

λ ∈ supp �̂kf , k � 1. Denote the Hecke operator

T =
∑

ν(g)ρg. (19)

It follows that

‖T (F )‖2 >
1

20
(20)

with F = �kf
‖�kf ‖2

for some k � k0. Note that k0 can be made arbitrarily large by suitable choice of K in (6). Let

δ = 4−k and k < � logQ < ck such that ‖μ = ν(�) ∗ Pδ‖∞ < δ−τ , τ = 10−2, according to Lemma 2. From (20)∥∥∥∥∫
ρgFμ(dg)

∥∥∥∥
2
> 30−� (21)

implying

10−3� < δ−2τ

∫
Ω×Ω

∣∣〈ρgF,ρhF 〉∣∣dg dh < δ−2τ (1 + ε)c�
∫

Ω.Ω

∣∣〈F,ρgF 〉∣∣dg (22)

with Ω = B(1, (1 + ε)�).
We decompose F = F1 + F∞ with ‖F1‖1 � 2−αk , ‖F∞‖∞ � 2αk , α = 1

20 and Fi (i = 1,∞) satisfying the same
Fourier transformation restriction.

Parametrizing g = (
a b
c d

) = ( u cos θ v cosψ

u sin θ v sinψ

)
, uv sin(ψ − θ) = 1, we have dg = da db dc

a
= dudθ dψ

u sin2(θ−ψ)
on the chart

a �= 0. Thus |dg| < ‖g‖3 dudθ dψ .
Estimate (22) for F = Fi . For i = 1, (22) � δ−2τ (1 + ε)c�‖F‖1.

∫ |F1(cotggψ)|dψ < (1 + ε)c�δ−2τ 4−αk . Let ψ

be a smooth function on SL2(R), ψ(g) = 1 for ‖g‖ < (1 + ε)2�, ψ(g) = 0 for ‖g‖ > 2(1 + ε)2�. For F = F∞

(22)2 < δ−4τ (1 + ε)c�4αk

1∫
0

1∫
0

∣∣∣∣∫ ρgF (x)ρgF̄ (y)ψ(g)dg

∣∣∣∣dx dy < (1 + ε)c�δ−4τ 4(2α− 1
6 )k

(here we used that supp F̂ ⊂ [|λ| ∼ 2k]).
Collecting these estimates gives (21) < (1+ε)c�(4k(τ− α

2 ) +2
1
2 k(τ+2α− 1

6 )) < 2− k
50 , contradicting �. logQ < ck if Q

is large enough.

Remark. Previous argument is clearly of a general nature and applies in other situations. In fact it becomes more trans-
parent in the case of a finite or compact group. Consider for instance the representation of G = SO(d) on L2(Sd−1),
ρgf = f ◦ g, for d � 3.

Denote again f = ∑
�kf a Littlewood–Paley decomposition for f ∈ L2(Sd−1) (which may be realized using

spherical harmonics). Taking F as above, we obtain in (22)

δ−2τ

∫
G

∣∣〈F,ρgF 〉∣∣dg. (23)

Clearly

(23)2 � δ−4τ

∫
S3

∣∣F(x)
∣∣∣∣F(y)

∣∣∣∣F(z)
∣∣∣∣(Aθ(x,y)F )(z)

∣∣dx dy dz (24)
d−1
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with θ(x, y) the angle between x, y ∈ S and where AθF(z) denotes the average of F on the (d −2)-sphere [ζ ∈ Sd−1;
θ(z, ζ ) = θ(x, y)]. Since F = �kF , standard bounds on spherical averaging operators imply ‖AθF‖L2(Sd−1)

�
C(1 + 2k| sin θ |)− d

2 +1 and hence (24) < δ−4τ 2−k d−2
2 .
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