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Abstract

We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global pressure/
fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler step for the saturation
equation, equal-order interpolation for the pressure and the saturation, and without any limiters. An accurate total velocity field is
recovered from the global pressure equation to be used in the saturation equation. Numerical experiments show the advantages of
the proposed reconstruction. To cite this article: A. Ern et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Reconstruction précise de la vitesse pour des approximations par la méthode de Galerkine discontinue d’écoulements di-
phasiques en milieu poreux. Nous considérons une méthode de Galerkine discontinue pour approcher les écoulements diphasiques
non-miscibles en milieu poreux dans la formulation en pression globale. Une approche séquentielle est utilisée avec un schéma
d’Euler implicite pour l’équation de la saturation, le même ordre polynomial pour la pression et la saturation, et en l’absence de
limiteurs. Nous montrons comment reconstruire à partir de l’équation en pression une vitesse totale précise pour l’équation de la
saturation. Des exemples numériques illustrent les avantages de l’approche proposée. Pour citer cet article : A. Ern et al., C. R.
Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the most popular formulations of the governing equations for two-phase immiscible porous media flows
is the so-called global pressure/fractional flow approach introduced by Chavent and Jaffré [3]. Finite volume and
finite element approximations to this formulation have been analyzed recently; see, e.g., [4,7]. In the global pres-
sure/fractional flow formulation (for short, GP formulation), an elliptic equation of Darcy type for the global pressure
is coupled to a nonlinear degenerate parabolic equation for the saturation of, say, the non-wetting phase by means of a
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total velocity that is calculated from the global pressure equation. Such weak coupling allows to develop and sequen-
tially use efficient numerical methods for each type of equation and is considered as one of the important advantages
of the GP formulation.

Discontinuous Galerkin (DG) methods are often advocated as a suitable approach to discretize in space both
pressure and saturation equations. Advantages include the flexibility in using non-matching meshes and variable
polynomial degrees and the potential to limit non-physical oscillations near singularities; see, e.g. [2]. However, one
critical issue when approximating the global pressure equation by DG methods is the accurate recovery of the total ve-
locity to be used sequentially in the saturation equation. One possibility suggested in [5] is to resort to a fully implicit
DG method, since numerical experiments indicate that non-physical oscillations can be avoided, but this entails sub-
stantial computational costs to solve the full nonlinear system of discrete equations coupling the global pressure and
saturation equations. Alternatively, a total velocity can be postprocessed from the broken gradient of the approximate
global pressure. A first approach [1] considers Brezzi–Douglas–Marini finite element spaces and yields a postpro-
cessed total velocity with continuous normal component at interelement faces. More recently, a reconstruction using
Raviart–Thomas finite element spaces has been proposed [6], thereby improving the accuracy of the postprocessed
velocity.

The aim of this Note is to present a DG method for two-phase, immiscible porous media flows in the GP formulation
that uses an implicit scheme in time for the saturation and equal-order interpolation for the pressure and the saturation,
while still avoiding non-physical oscillations near singularities. The key feature of the proposed method is to use the
postprocessing of [6] to reconstruct accurately the total velocity from the global pressure distribution. We believe that
the present formulation can be useful in petroleum reservoir and groundwater flow simulations. For simplicity, we
consider herein a one-dimensional setting, but the methodology can be readily extended to multiple space dimensions.

2. The DG approximation of the global pressure/fractional flow formulation

Let P denote the global pressure, u the total velocity, and S the non-wetting phase saturation. The governing
equations are for x ∈ (0,L) and t ∈ (0, T ),

u = −λ(S)K∂xP, −∂x

(
λ(S)K∂xP

) = 0, (1)

φ∂tS + ∂x

(
uf (S)

) − ∂x

(
ε(S)∂xπ(S)

) = 0, (2)

where φ denotes the porosity and K the intrinsic (absolute) permeability, both parameters being taken constant for
simplicity. Moreover, defining the total mobility λ = λw + λn as the sum of the wetting and non-wetting phase mobil-
ities, f = λn

λ
denotes the fractional flux, π the capillary pressure, and ε = λwf K . The quantities λn, λw , π , and ε are

smooth functions of S; examples of such functions are given below. The saturation S takes values in [Snr ,1 − Swr ],
where Snr and Swr respectively denote the residual saturation of the non-wetting and wetting phases. Since we are
concerned with accurate velocity recovery, we avoid additional difficulties when S approaches the limits of its admis-
sible values; thus, we suppose here that S is uniformly bounded away from Snr and 1 − Swr , so that the saturation
equation is non-degenerate. Typical boundary and initial conditions are

P |x=0 = P1, P |x=L = P2; S|x=0 = S1, −ε(S)∂xπ(S)|x=L = 0; S|t=0 = S0. (3)

Finally, we observe that owing to the first equation in (1), the total velocity u is constant in space and only depends
on time, i.e., ∂xu = 0. Owing to the choice of boundary conditions, its time evolution is a priori unknown.

To discretize in space, consider (for simplicity) a uniform partition of the domain (0,L) with M elements T =
{Ti}1�i�M and nodes N = {xi}1�i�M+1 with Ti = (xi, xi+1) of length h = L

M
. Set N ′ = N \ {xM+1}. Let an integer

p � 1 and let Vh denote the space of piecewise polynomials of degree � p on each mesh element. For any node
xi ∈ N , define “the unit normal vector” ni as n1 = −1 and ni = 1 if i > 1. Moreover, for any smooth enough function
v that is possibly two-valued at xi , define its jump and mean-value at xi respectively as [[v]]i = v|Ti−1(xi) − v|Ti

(xi)

and {v}i = 1
2 (v|Ti−1(xi) + v|Ti

(xi)) if xi is an interior node and as [[v]]i = {v}i = v(xi) if xi is a boundary node.
Furthermore, to discretize in time, let N be an integer and let τ = T

N
be the time step.

We consider a sequential scheme with implicit backward Euler time approximation of the saturation equation, sym-
metric interior penalty DG method for the global pressure equation and for the diffusion term in the saturation equa-
tion, and Godunov fluxes for the nonlinear hyperbolic term in the saturation equation. Namely, for n = 0,1, . . . ,N −1,
we solve for P n+1 ∈ Vh such that ∀z ∈ Vh,
h
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∑
T ∈T

∫

T

λ
(
Sn

h

)
K dxP

n+1
h dxz −

∑
xi∈N

(
ni

{
λ
(
Sn

h

)
K dxP

n+1
h

}
i
[[z]]i + ni

{
λ
(
Sn

h

)
K dxz

}
i

[[
P n+1

h

]]
i

)

+
∑

xi∈N
γi

[[
P n+1

h

]]
i
[[z]]i = (

λ
(
Sn

h

)
K dxz + γ1z

)∣∣
x=0P1 + (−λ

(
Sn

h

)
K dxz + γM+1z

)∣∣
x=L

P2, (4)

with Sn
h ∈ Vh given from the previous step (n � 1) or by the initial data (n = 0), and then we solve for Sn+1

h ∈ Vh such
that ∀v ∈ Vh,

∑
T ∈T

∫

T

φτ−1Sn+1
h v −

∑
T ∈T

∫

T

un+1
h f

(
Sn+1

h

)
dxv +

∑
xi∈N

Φn+1
hi [[v]]i +

∑
T ∈T

∫

T

ε
(
Sn

h

)
π ′(Sn

h

)
dxS

n+1
h dxv

−
∑

xi∈N ′

(
ni

{
ε
(
Sn

h

)
π ′(Sn

h

)
dxS

n+1
h

}
i
[[v]]i + ni

{
ε
(
Sn

h

)
π ′(Sn

h

)
dxv

}
i

[[
Sn+1

h

]]
i

)

+
∑

xi∈N ′
δi

[[
Sn+1

h

]]
i
[[vh]]i =

∑
T ∈T

∫

T

φτ−1Sn
hv + (

ε
(
Sn

h

)
π ′(Sn

h

)
dxv + δ1v

)∣∣
x=0S1. (5)

The key point, namely the calculation of un+1
h from (4) to be used in (5), is discussed below. Furthermore,

the penalty coefficients γi and δi are evaluated as γi = γ∗p2h−1K minT ;xi∈∂T {λ(Sn
h)|T (xi)} and δi = δ∗p2h−1 ×

minT ;xi∈∂T {ε(Sn
h)π ′(Sn

h)|T (xi)} with the numerical parameters γ∗ and δ∗ in the range [5,10]. Godunov’s flux for
nondecreasing flux function f coincides with flux upwinding: Φn+1

h1 = un+1
h (x1)f (S1) and Φn+1

hi = un+1
h (xi) ×

f (Sn+1
h )|Ti−1(xi) for i � 2.

3. Total velocity reconstruction

In the present one-dimensional setting, the total velocity un+1
h belongs to the space Wh spanned by continuous,

piecewise polynomials of degree � p + 1 on each mesh element. In a multi-dimensional setting, the total velocity
belongs to the Raviart–Thomas finite element space of order p. Taking inspiration from [6], un+1

h is defined locally
by setting

un+1
h (xi) = −{

λ
(
Sn

h

)
K dxP

n+1
h

}
i
+ niγi

[[
P n+1

h

]]′
i
, ∀xi ∈ N , (6)∫

T

un+1
h w = −

∫

T

λ
(
Sn

h

)
K dxP

n+1
h w +

∑
xi∈∂T

ni

{
λ
(
Sn

h

)
Kw

}
i

[[
P n+1

h

]]′
i
, ∀T ∈ T , ∀w ∈ Pp−1(T ), (7)

where [[P n+1
h ]]′1 = P n+1

h (x1) − P1, [[P n+1
h ]]′M+1 = P n+1

h (xM+1) − P2, and [[P n+1
h ]]′i = [[P n+1

h ]]i otherwise. To illus-
trate the impact of the above reconstruction, we present numerical results with the following data: L = 300 m, φ = 0.2,
K = 10−11 m2, Swr = 0.2, and Snr = 0.15. We use Brooks–Corey model for capillary pressure and mobilities, π(S) =
Pe(1 − Se)

− 1
θ , λw(S) = 1

μw
(1 − Se)

2+3θ
θ , λn(S) = 1

μn
(Se)

2(1 − (1 − Se)
2+θ
θ ), where Se = (S − Snr)(1 − Swr − Snr)

−1

denotes the effective saturation, Pe = 103 Pa, θ = 2, μw = 0.001 kg/ms, and μn = 0.01 kg/ms. The boundary condi-
tion for saturation is S1 = 0.25 while the initial condition is S0 = 0.7. The boundary condition for the wetting phase
pressure is pw1 = 0.3 MPa and pw2 = 0.15 MPa whence the global pressure boundary data P1 = 0.30111 MPa and
P2 = 0.15217 MPa are calculated from the global pressure formula P = pw + ∫ S

Snr
f (ξ)π ′(ξ)dξ + π(Snr) at S = S1

and S = S0 respectively. First-order polynomial approximation is used both for the global pressure and for the satura-
tion on a uniform grid with 32 elements; penalty parameter values are γ∗ = δ∗ = 10. Final simulation time is T = 360
days and the time step is τ = 5 days. Fig. 1 compares the results obtained with the accurate velocity reconstruction
(6)–(7) to two more simpler and less accurate velocity reconstructions, namely (i) taking the piecewise derivative
of the global pressure which yields a discontinuous, piecewise constant velocity (labeled NoRec) and (ii) defining a
continuous, piecewise affine velocity by setting its nodal values to the average of the global pressure fluxes (labeled
NodAv). The NodAv-reconstruction actually amounts in the present setting to the postprocessing proposed in [1];
it accounts partly for the matching condition (6) (yet disregarding the jump contribution), but does not improve the
velocity profile inside mesh elements by using (7). While the global pressure profile remains fairly insensitive to the
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Fig. 1. Top left: pressure at final time; top right: wetting phase saturation at final time; bottom left: total velocity at final time; bottom right: mean
value of total velocity as a function of time.

Fig. 1. En haut à gauche : pression au temps final ; en haut à droite : saturation de la phase mouillante au temps final ; en bas à gauche : vitesse
totale au temps final ; en bas à droite : valeur moyenne de la vitesse totale en fonction du temps.

velocity reconstruction, the saturation profile exhibits non-physical oscillations except in the case where the recon-
struction defined by (6)–(7) is used. Moreover, oscillations in the phase pressure profiles can also occur (not shown).
The origin of these instabilities is the oscillatory behavior in space of the NoRec- and NodAv-velocity reconstructions.
Such reconstructions also produce an inaccurate description of the time evolution of the mean value of the total veloc-
ity. To conclude, we observe that the present velocity reconstruction, which can be extended to multiple dimensions by
proceeding as in [6], yields accurate numerical solutions that are not polluted by spurious oscillations. We emphasize
that no limiters were used in the present simulations.
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