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Abstract

We give a short and uniform proof of a special case of Tits’ Centre Conjecture using a theorem of J.-P. Serre and a result from the
authors in 2005. We consider fixed point subcomplexes XH of the building X = X(G) of a connected reductive algebraic group G,
where H is a subgroup of G. To cite this article: M. Bate et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la conjecture du centre de Tits pour les sous-complexes de points fixes. Nous donnons dans cette Note une démonstration
courte et uniforme d’un cas particulier de la conjecture du centre de Tits, en utilisant un théorème de J.-P. Serre et un résultat des
auteurs en 2005. Nous considérons les sous-complexes XH de l’immeuble X = X(G) associé à un groupe connexe réductif G, des
points fixes de l’action d’un sous-groupe H de G. Pour citer cet article : M. Bate et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a connected reductive linear algebraic group defined over an algebraically closed field k. Let X = X(G)

be the spherical Tits building of G, cf. [10]. Recall that the simplices in X correspond to the parabolic subgroups
of G, [8, §3.1]; for a parabolic subgroup P of G, we let xP denote the corresponding simplex of X. The conjugation
action of G on itself naturally induces an action of G on the building X, so the image of G is a subgroup of the
automorphism group of X. Given a subcomplex Y of X, let NG(Y ) denote the subgroup of G consisting of elements
which stabilize Y (in this induced action).

Recall the geometric realization of X as a bouquet of n-spheres. A subcomplex Y of X is called convex if whenever
two points of Y (in the geometric realization) are not opposite in X, then Y contains the unique geodesic joining these
points, [8, §2.1]. A convex subcomplex Y of X is contractible if it has the homotopy type of a point, [8, §2.2]. The
following is a version due to J.-P. Serre of the so-called “Centre Conjecture” by J. Tits, cf. [9, Lem. 1.2], [6, §4],
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[8, §2.4], [11]. This has been proved by B. Mühlherr and J. Tits for spherical buildings of classical type [5]. The
simplex referred to in the conjecture is called a centre for Y .

Conjecture 1.1. Let Y be a convex contractible subcomplex of X. Then there is a simplex in Y which is stabilized by
all automorphisms of X which stabilize Y .

For a subgroup H of G let XH be the fixed point subcomplex of the action of H , i.e., XH consists of the simplices
xP ∈ X such that H ⊆ P . Thus, if H ⊆ K ⊆ G are subgroups of G, then we have XK ⊆ XH ; observe that XH is
always convex, cf. [8, Prop. 3.1]. Our main result, Theorem 3.1, gives a short, conceptual proof of a special case of
Conjecture 1.1; namely, we consider subcomplexes of the form Y = XH for H a subgroup of G, and we consider
automorphisms only from NG(Y ). The special case G = GL(V ) in Theorem 3.1 generalizes the classical construction
of upper and lower Loewy series, see Remark 3.2(ii).

The initial motivation for Tits’ Conjecture 1.1 was a question about the existence of a certain parabolic subgroup
associated with a unipotent subgroup of a Borel subgroup of G (cf. [6, §4.1], [8, §2.4]). This existence theorem was
ultimately proved by other means, [3, §3]. In Example 3.6 below we show that the existence of such a parabolic
subgroup can be viewed as a special case of Theorem 3.1.

2. Serre’s notion of complete reducibility

Following Serre [8, Def. 2.2.1], we say that a convex subcomplex Y of X is X-completely reducible (X-cr) if for
every simplex y ∈ Y there exists a simplex y′ ∈ Y opposite to y in X. The following is part of a theorem due to Serre,
[6, Thm. 2]; see also [8, §2] and [11]:

Theorem 2.1. Let Y be a convex subcomplex of X. Then Y is X-completely reducible if and only if Y is not con-
tractible.

The notion of convexity for subcomplexes of X has the following nice characterization in terms of parabolic
subgroups due to Serre, [8, Prop. 3.1]:

Proposition 2.2. Let Y be a subcomplex of X. Then Y is convex if and only if whenever P,P ′, and Q are parabolic
subgroups in G with xP , xP ′ ∈ Y and Q ⊇ P ∩ P ′, then xQ ∈ Y .

Note that many subcomplexes which arise naturally in the building are fixed point subcomplexes. For example,
the apartments of X are the subcomplexes XT for maximal tori T of G and, more generally, the smallest convex
subcomplex containing two simplices xP and xP ′ is XP∩P ′

.
Following Serre [8], we say that a (closed) subgroup H of G is G-completely reducible (G-cr) provided that

whenever H is contained in a parabolic subgroup P of G, it is contained in a Levi subgroup of P ; for an overview of
this concept see for instance [7] and [8]. In the case G = GL(V ) (V a finite-dimensional k-vector space) a subgroup
H is G-cr exactly when V is a semisimple H -module, so this faithfully generalizes the notion of complete reducibility
from representation theory. An important class of G-cr subgroups consists of those that are not contained in any proper
parabolic subgroup of G at all (they are trivially G-cr). Following Serre, we call them G-irreducible (G-ir), [8]. As
before, in the case G = GL(V ), this concept coincides with the usual notion of irreducibility. If H is a G-completely
reducible subgroup of G, then H 0 is reductive, [7, Property 4].

Since XH is a convex subcomplex of X = X(G) for any subgroup H of G, Theorem 2.1 applies in this case and
we have the following result (see [7, p. 19], [8, §3]):

Theorem 2.3. Let H be a subgroup of G. Then H is G-completely reducible if and only if the subcomplex XH is not
contractible.

Remark 2.4. By convention, the empty subcomplex of X is not contractible. This is consistent with Theorem 2.1,
because H is G-ir if and only if XH = ∅, and a G-ir subgroup is G-cr.
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Our next result [1, Thm. 3.10] gives an affirmative answer to a question by Serre, [7, p. 24]. The special case when
G = GL(V ) is just a particular instance of Clifford Theory.

Theorem 2.5. Let N ⊆ H ⊆ G be subgroups of G with N normal in H . If H is G-completely reducible, then so is N .

3. Tits’ Centre Conjecture for fixed point subcomplexes

Here is the main result of this Note:

Theorem 3.1. Let Y be a convex, contractible subcomplex of X. Suppose that Y is of the form Y = XH for a subgroup
H of G. Then there is a simplex in Y which is stabilized by all elements in NG(Y ).

Proof. Let M be the intersection of all parabolic subgroups of G corresponding to simplices in Y . Since H ⊆ M ,
we have XM ⊆ XH . But every parabolic subgroup containing H contains M , by definition of M . Hence XM = XH .
Set K := NG(Y ). It is clear that M is normal in K . Since XK ⊆ XM , it suffices to show that XK �= ∅. Now Y = XM

is contractible, so Theorem 2.3 implies that M is not G-cr. Thus, by Theorem 2.5, it follows that K is not G-cr and
again by Theorem 2.3 that XK is contractible. In particular, XK is non-empty, by Remark 2.4. Thus K stabilizes a
simplex in XM , as claimed. �
Remarks 3.2. (i). Let H ⊆ K ⊆ G be subgroups of G with H normal in K . Suppose that XH is contractible. Since
H is normal in K , the latter permutes the simplices in XH , and so K ⊆ NG(XH ). It thus follows from Theorem 3.1
that K fixes a simplex in XH .

(ii). Observe that Theorem 3.1 can be viewed as a generalization of the classical construction of upper and lower
Loewy series in representation theory (for definitions, see e.g., [4]). Let V be a finite-dimensional k-vector space.
Let H ⊆ K ⊆ GL(V ) be subgroups of GL(V ) with H normal in K and suppose that V is not H -semisimple. Then
the upper and lower Loewy series of the H -module V are proper K-stable flags in V , and so they provide “natural
centres” for the action of K on the complex X(V )H , where X(V ) is the flag complex of V .

(iii). In [8, Prop. 2.11], J.-P. Serre showed that Theorem 2.5 is a consequence of Tits’ Centre Conjecture 1.1. So,
Theorem 3.1 is just the reverse implication of Serre’s result [8, Prop. 2.11] in the special case when Theorem 2.5
applies.

(iv). Let k0 be any field and let k be the algebraic closure of k0. Suppose that G is defined over k0. One can define
what it means for a subgroup H defined over k0 to be G-completely reducible over k0, cf. [1, Sec. 5], [8, Sec. 3]. In
[1, Thm. 5.8], it is proved that if k0 is perfect, then a subgroup H is G-cr over k0 if and only if it is G-cr. Using this,
one can show that the proof of Theorem 3.1 goes through for buildings of the form X = X(G(k0)). In particular, this
includes many finite spherical buildings attached to finite groups of Lie type.

(v). In the Centre Conjecture 1.1, one considers all automorphisms of the building. If X = X(G), then in many
cases, AutX is generated by inner and graph automorphisms of G, together with field automorphisms (cf. [10, Intro.]).
We will consider graph and field automorphisms in the setting of Theorem 3.1 in future work (see [2, Sec. 5]).

Our final result gives a characterization of subcomplexes of X of the form XH for a subgroup H of G.

Proposition 3.3. Let Y ⊆ X be a subset of simplices of X. Then Y is a subcomplex of X of the form Y = XH for some
subgroup H of G if and only if for every n ∈ N, the following condition holds:

(3.4) if P1, . . . ,Pn, Q are parabolic subgroups with xPi
∈ Y and Q ⊇ ⋂n

i=1 Pi , then xQ ∈ Y .

Proof. First suppose that Y = XH for some subgroup H of G. Let n ∈ N and let xP1, . . . , xPn ∈ Y . If Q is a parabolic
subgroup of G containing

⋂n
i=1 Pi , then Q contains H , because each Pi does, so xQ ∈ Y .

Conversely, suppose that condition (3.4) holds for all n ∈ N. Let H be the intersection of all P such that xP ∈ Y .
By the descending chain condition, we have H = ⋂m

i=1 Pi for some m ∈ N and some Pi with xPi
∈ Y . It follows from

condition (3.4) for n = m that for any parabolic subgroup P containing H , xP ∈ Y , so XH ⊆ Y . It is clear from the
definition of H that Y ⊆ XH . �
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Remark 3.5. Note that Y is a subcomplex of X precisely when condition (3.4) holds for n = 1. Further, by Proposi-
tion 2.2, Y is convex if and only if condition (3.4) holds for n = 2.

As indicated in the introduction, a fundamental theorem of Borel and Tits on unipotent subgroups of Borel sub-
groups of G [3, §3] yields a key example for Theorem 3.1.

Example 3.6. Let U be a non-trivial unipotent subgroup of G contained in a Borel subgroup B of G. Let Y = XU .
Note that U is not G-cr; for if U is contained in a Borel subgroup B− opposite to B , then U is contained in the
maximal torus B− ∩ B of G, which is absurd. So Y is contractible, by Theorem 2.3. Thus, by Theorem 3.1, NG(U)

stabilizes a simplex in Y , i.e., there is a parabolic subgroup P of G containing NG(U). Now, the construction of Borel
and Tits in [3] yields such a parabolic subgroup P which enjoys additional properties; for example, it is stabilized by
automorphisms of G which stabilize U . The framework for G-complete reducibility developed in [1] and subsequent
papers allows one to associate such canonical parabolic subgroups to all non-G-cr subgroups of G, see [2, Sec. 5].
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