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Abstract

We propose a pricing method for derivatives modeled by a set of stochastic differential equations with the objective of reducing
the computing time. The speed up observed in our numerical implementation can be as large as 50. The method is based on a joint
use of Monte-Carlo simulations and PDE or analytical formulas. The method is tested in the framework of the Heston stochastic
volatility model with and without barriers. To cite this article: G. Loeper, O. Pironneau, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Pricing d’option financière avec volatilité stochastique par une métode mixte EDP / Monte-Carlo. Nous proposons dans
cette note une méthode pour accélérer les calculs d’options financières modélis’ees par un système d’équations différentielles
stochastiques. La méthode consiste à intégrer un groupe d’équation par une méthode de Monte-Carlo et les autres par une méthode
déterministe, EDP ou formules de Black–Scholes. La méthode est présentée avec une justification euristique seulement sur le
modl‘ele de Heston puis testée numériquement et comparée à une solution Monte-Carlo classique du modlèle de Heston. Les
simulations numériques montrent qu’on peut obtenir un facteur d’accérération allant jusqu’a 50. Pour citer cet article : G. Loeper,
O. Pironneau, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In this Note, we propose a pricing method for options (see [2,5] or [1] for instance) under complex diffusion
processes. The goal of the work is to take advantage of the flexibility of Monte-Carlo simulations, and when it is
possible the accuracy and rapidity of analytical formulas or partial differential equations. We present two examples to
illustrate our method, one mixed Monte-Carlo/analytic solver for vanilla options, and one mixed Monte-Carlo/PDE
solver for barrier options.

The diffusion process that we have chosen for our examples is the Heston stochastic volatility model [3]: under a
risk neutral probability, the risky stock St and the volatility σt follow the following diffusion process:
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dS

S
= r dt + σt dW 1

t , (1)

dvt = k(θ − vt )dt + δ
√

vt dW 2
t , (2)

with vt = σ 2
t , and E(dW 1

t · dW 2
t ) = ρ dt , E(·) denoting the usual expectation.

The pair W 1,W 2 is a two-dimensional correlated Brownian motion, the correlation between the two components
being equal to ρ. It is usually observed in financial markets that options with low strikes have a higher implied
volatility than at the money or high strikes options, this phenomenon can be rendered by a negative value of ρ, it is
known as the smile.

2. The algorithm

The time is discretized into N steps of length δt , and denoting by T the maturity of the option, we have T = Nδt .
For a put option with pay off P = E(K − ST )+, full Monte-Carlo simulation (see [4]) consists in a time loop starting
at S0, v0 = σ 2

0 of

Si+1 = Si(1 + rδt + σi

√
δt )

(
N1(0,1)ρ + N2(0,1)

√
1 − ρ2

)
,

vi+1 = vi + k(θ − vi)δt + σi

√
δtN2(0,1)δ with σi = √

vi (3)

where Nj(0,1), j = 1,2 are realizations of two independent Gaussian variables, and then set PM = 1
M

∑
(K −Sm

N)+
where {Sm

N }Mm=1 are M realizations of SN .
The method is slow, so instead we propose to keep equation (3b) for vi+1 but use a PDE for PM , result of an Îto

calculus on (3sa) for each realization σm = {√vm
i }Ni=1. In other words for each m, we solve analytically or numerically

the PDE with respect to the variables t and S conditionally to the volatility realization σm.

2.1. Derivation of the “conditional” Black & Scholes PDE

The main task is to obtain the Black & Scholes PDE conditional to the knowledge of the volatility realization (past
and future). Having simulated a trajectory of the volatility, let us first consider the following process:

dSt = rSt dt + ρσtStμt dt + σt

√
1 − ρ2 dW̃ 1

t , (4)

μt = W 2(ti+1) − W 2(ti)

δt
− 1

2
ρσtSt for t ∈ [ti , ti+1). (5)

By Ito’s formula we have

d log(S) = r dt + ρσtμt dt +
√

1 − ρ2σt dW̃ 1
t − 1

2

(
1 − ρ2)σ 2

t dt.

Thus we get

S(ti+1) = S(ti) exp

(
rδt + σti

(√
1 − ρ2

(
W̃ 1

ti+1
− W 1

ti

) + ρ
(
W 2

ti+1
− W 2

ti

)) − 1

2
σ 2

ti
δt

)

= S(ti) exp

(
rδt + σti

(
W 1

ti+1
− W 1

ti

) − 1

2
σ 2

ti
δt

)
.

We recognize here a discretization of the stochastic integral

exp

(
rt +

t∫
0

σt dW 1
t − 1

2

t∫
0

σ 2 dt

)
,

where σt solves (2), hence we can conclude the following

Proposition 2.1. As δt → 0, the process St converges to the solution of the stochastic differential equations (1), (2).
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Table 1
Precision versus ρ.

ρ −0.5 0 0.5 0.9
Heston MC 11.135 10.399 9.587 8.960
Heston MC+BS 11.102 10.391 9.718 8.977
Speed-up 42 44 42 42

Table 2
Variations from sample to sample for various values of M ′ and M .

Sample MC+BS MC

M ′ = 100 M ′ = 1000 M ′ = 10 000 M = 3000 M = 30 000 M = 300 000

P 1 10.475 11.129 11.100 11.564 11.481 11.169
P 2 10.436 11.377 11.120 11.6978 11.409 11.249
P 3 11.025 11.528 11.113 11.734 11.383 11.143
P 4 11.205 11.002 11.113 11.565 11.482 11.169
P 5 11.527 11.360 11.150 11.085 11.519 11.208
P = 1

5
∑

P i 10.934 11.279 11.119 11.529 11.454 11.187

( 1
5

∑
(P i − P)2)

1
2 0.422 0.188 0.0168 0.232 0.0507 0.0370

The Black & Scholes PDE corresponding to the diffusion (4) reads

∂tu + rS∂Su + 1

2

√
1 − ρ2σ 2

t S2∂SSu + ρσtμtS∂Su = ru. (6)

3. Vanilla grid pricing by the mixed Monte-Carlo/analytic method

For vanilla options with a terminal condition for (6) given by u(T ,S) = φ(S), (6) has an analytical solution:

σ̄ 2 = 1

T

T∫
0

σ 2
t dt, M = ρ

T

∑
i

σti

(
W 2

ti+1
− W 2

ti

)
,

S(x) = S0 exp

(
(r + M)T − 1

2
σ̄ 2T +

√
1 − ρ2σ̄ x

)
,

u(0, S0) = e−rT

∫
R+

φ
(
S(x)

)exp(−x2/2T )√
2πT

dx.

We have implemented this algorithm, and compared it against a plain Monte-Carlo simulation for different values
of the parameter ρ and different values of the discretization parameters N , δS, M ′, M where δS is the size of the
(uniform) interval used in connection with the finite element method discretization of (6) and M ′ is the number of
Monte-Carlo trials in the new algorithm. Recall that N is the number of time steps (same in (6)) and M is the number
of realizations in the pure Monte-Carlo method for the Heston model.

The parameters are: S0 = 100, K = 90, r = 0.05, σ0 = 0.6, θ = 0.36, k = 5, δ = 0.2, T = 0.5. To observe the
precision with respect to ρ we have taken a large number of Monte-Carlo samples: M = 3 × 105 and M ′ = 104.
Similarly the number of time steps is 300 with 400 mesh points and Smax = 600 (i.e. δS = 1.5) – see Table 1.

To study the precision we let M and M ′ vary. Table 2 shows the results for 5 samples and the corresponding mean
value for PN and variance. Note that one needs many more samples for pure MC than for the mixed strategy MC+BS.
Hence MC+BS is, in fact, faster by a factor much greater than 50.

4. Barrier pricing by the mixed Monte-Carlo/PDE method

Assume that the contract becomes void if the asset St goes out of the interval Sm,SM . The algorithm is the same
but the Black–Scholes formula cannot be used; however the PDE is solved only in the interval Sm,SM , with the two
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Fig. 1. On the left, the put versus S0 (the value of the underlying asset today) computed by the mixed Monte-Carlo/EDP method, which is faster
than Heston Monte-Carlo but also gives the value of the put for all S0; the parameters are the same as before with ρ = −0.5, M ′ = 1000. On the
right the same with a barrier at 70. For a selected set of values for S0, the results plotted are obtained by 3 different methods: Heston Monte-Carlo,
mixed Monte-Carlo/EDP method with and without the Brownian bridge correction. Notice that the correction dramatically improves the precision.

boundary conditions u(t, Sm) = u(t, SM) = 0 for all t ∈ (0, T ). While this PDE is numerically easier than the previous
one, the problem is harder for a pure Monte-Carlo solution of Heston’s model because one needs to retain only the
feasible samples. The cost for the pure Monte-Carlo algorithm is about double the case without constraints while the
mixed algorithm is now roughly 5 times slower than pure Monte-Carlo. However, the mixed method gives PN for all
values of S0, as shown on Fig. 1 for the case without barriers.

4.1. Brownian bridge

However, in order to be more accurate, one should not forget the additional noise corresponding to the Brownian
bridge of W 2 between two time steps: indeed, we have replaced the Brownian of the volatility W 2 by an affine
function between ti and ti+1. This is only true at times ti and ti+1. Between two time steps, the Brownian W 2 can be
represented as

W 2 = W 2
ti

+ t − ti

ti+1 − ti
(Wti+1 − Wti ) + Bt ,

Bt =
(

ti+1 − t

	t

)1/2

W 3
t ,

where W 3 is a standard Brownian motion independent from W 1,W 2 on each [ti , ti+1].
Hence, the diffusion for the spot should be replaced by

S̃t = St

(
1 + σtρ

(
ti+1 − t

	t

)1/2

W 3
t

)
. (7)

Then we have to derive a suitable PDE: considering a new variable Y , for which

Yt =
√

ti+1 − t

	t
W 3

t ,

dYt =
√

ti+1 − t

	t
dW 3

t − 1√
(ti+1 − t)	t

W 3
t .

Then new B&S PDE system is

∂tu + rS∂Su + 1

2

√
1 − ρ2σ 2S2∂SSu + ρσtμtS∂Su

+ σ 2S2ρ2
(

ti+1 − t
∂YY u − 1

Y∂Y u

)
= ru for S + Y > B, (8)
	t ti+1 − t
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u|S+Y=B = 0, (9)

u(T ,S,Y ) = φ(S). (10)

4.2. Numerical approximation by barrier shifting

The law of the maximum for Brownian motion: We consider a Brownian motion Wt, t between 0 and T . We
consider MT = max{Wt, t ∈ [0, T ]}. By the reflection principle, we have for α � β

P (MT � β,WT � α) = P(WT � 2β − α).

Then

P(MT � β) = P(MT � β,WT � β) + P(MT � β,WT � β)

= P(WT � 2β − β) + P(WT � β)

= 2P(WT � β).

Moreover, we have

P(MT � β|WT = α) = lim
dα→0

P(MT � β,WT � α + dα) − P(MT � β,WT � α)

P (WT ∈ [α + dα])
= exp

(
−2β(β − α)

T

)
.

We know that

Bt =
(

ti+1 − t

	t

)1/2

W 3
t

is the Brownian bridge between ti and ti+1. We can approximate its minimum by its expectation, following the
considerations above, and thus

E
(
inf

{
Bt , t ∈ [ti , ti+1]

}) = −√
	t/2.

We can therefore approximate the system (8) by the 1-d system, with a barrier shifted upward by a quantity
(
√

	t/2)σρB .

5. Conclusion

As it turns out, the convergence is quite good! Moreover, the computation time is a great deal improved, at least
when the Black–Scholes formula can be used. One could argue that there exists closed analytic formulas for the
Heston model, but our algorithm adapts with no modification for any diffusion process for the volatility. Moreover,
this can be seen as a useful tool when calibrating a stochastic volatility model on the implied volatility surface.
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