

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 347 (2009) 517-520

Partial Differential Equations/Harmonic Analysis

Boundedness of the gradient of a solution to the Neumann–Laplace problem in a convex domain

Vladimir Maz'ya^{a,b,1}

^a Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
 ^b Department of Mathematics, Linköping University, Linköping, 581 83, Sweden

Received 3 October 2008; accepted after revision 27 January 2009

Available online 26 March 2009

Presented by Evariste Sanchez-Palencia

Abstract

It is shown that solutions of the Neumann problem for the Poisson equation in an arbitrary convex *n*-dimensional domain are uniformly Lipschitz. Applications of this result to some aspects of regularity of solutions to the Neumann problem on convex polyhedra are given. *To cite this article: V. Maz'ya, C. R. Acad. Sci. Paris, Ser. I 347 (2009).* © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Bornitude du gradient d'une solution du problème de Neumann pour le Laplacien dans un domaine convexe. On démontre que les solutions du problème de Neumann pour l'équation de Poisson dans un domaine convexe arbitraire de dimension *n* sont uniformément Lipschitz. Les applications de ce résultat à quelques aspects de régularité de solutions du problème de Neumann sur les polyèdres convexes sont données. *Pour citer cet article : V. Maz'ya, C. R. Acad. Sci. Paris, Ser. I 347 (2009).* © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω be a bounded convex domain in \mathbb{R}^n and let $W^{l,p}(\Omega)$ stand for the Sobolev space of functions in $L^p(\Omega)$ with distributional derivatives of order l in $L^p(\Omega)$. By $L^p_{\perp}(\Omega)$ and $W^{l,p}_{\perp}(\Omega)$ we denote the subspaces of functions v in $L^p(\Omega)$ and $W^{l,p}(\Omega)$ subject to $\int_{\Omega} v \, dx = 0$.

Let $f \in L^2_{\perp}(\Omega)$ and let u be the unique function in $W^{1,2}(\Omega)$, also orthogonal to 1 in $L^2(\Omega)$, and satisfying the Neumann problem

$$-\Delta u = f \quad \text{in } \Omega, \qquad \frac{\partial u}{\partial v} = 0 \quad \text{on } \partial \Omega, \tag{1}$$

where ν is the unit outward normal vector to $\partial \Omega$ and the problem (1) is understood in the variational sense. It is well known that the inverse mapping $L^2_{\perp}(\Omega) \ni f \to u \in W^{2,2}_{\perp}(\Omega)$ is continuous [3,4,10,12,14–17,20,23,24]. As shown

E-mail address: vlmaz@mai.liu.se.

¹ The author was partially supported by the UK Engineering and Physical Sciences Research Council grant EP/F005563/1.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.03.001

in [2] (see also [11] for a different proof, and [1,7–9] for the Dirichlet problem), the operator $L_{\perp}^{p}(\Omega) \ni f \rightarrow u \in W_{\perp}^{2,p}(\Omega)$ is also continuous if $1 . One cannot guarantee the continuity of this mapping for any <math>p \in (2, \infty)$ without additional information about the domain. The situation is the same as in the case of the Dirichlet problem (see [4,7–9]), which, moreover, possesses the following useful property: if Ω is convex, the gradient of the solution is uniformly bounded provided the right-hand side of the equation is good enough. This property can be easily checked by using a simple barrier. Other approaches to similar results were exploited in [18] and [13] for different equations and systems but only for the Dirichlet boundary conditions. In this respect, other boundary value problems are in a nonsatisfactory state. For instance, it was unknown up to now whether solutions of (1) with a smooth f are uniformly Lipschitz under the only condition of convexity of Ω .

The main result of the present Note is *the boundedness of* $|\nabla u|$ *for the solution u of the Neumann problem* (1) *in any convex domain* $\Omega \subset \mathbb{R}^n$, $n \ge 2$. A direct consequence of this fact is the sharp lower estimate $A \ge n - 1$ for the first nonzero eigenvalue A of the Neumann problem for the Beltrami operator on a convex subdomain of a unit sphere. It was obtained by a different argument for manifolds of positive Ricci curvature by J.F. Escobar in [6], where the case of equality was settled as well. This estimate answered a question raised by M. Dauge [5], and it leads, in combination with known techniques of the theory of elliptic boundary value problems in domains with piecewise smooth boundaries (see [5,22]), to estimates for solutions of the problem (1) in various function spaces. Two examples are given at the end of this article.

2. Main result

In what follows, we need a constant C_{Ω} in the relative isoperimetric inequality $s(\Omega \cap \partial g) \ge C_{\Omega}|g|^{1-1/n}$, where g is an arbitrary open set in Ω such that $|g| \le |\Omega|/2$ and $\Omega \cap \partial g$ is a smooth (not necessarily compact) submanifold of Ω . By s we denote the (n-1)-dimensional area and by |g| the n-dimensional Lebesgue measure. The Poincaré–Gagliardo–Nirenberg inequality

$$\inf_{t \in \mathbb{R}} \|v - t\|_{L^{n/(n-1)}(\Omega)} \leq \text{const.} \|\nabla v\|_{L^{1}(\Omega)}, \quad \forall v \in W^{1,1}(\Omega),$$
(2)

where const. $\leq C_{\Omega}^{-1}$ stems the above isoperimetric inequality (see Theorem 2.2.3 [21]).

Theorem. Let $f \in L^q_{\perp}(\Omega)$ with a certain q > n. Then there exists is a constant c depending only on n and q such that the solution $u \in W^{1,2}_{\perp}(\Omega)$ of the problem (1) satisfies the estimate

$$\|\nabla u\|_{L^{\infty}(\Omega)} \leq c(n,q) C_{\Omega}^{-1} |\Omega|^{(q-n)/qn} \|f\|_{L^{q}(\Omega)}.$$
(3)

The argument leading to (3) is based on the inequality

$$\int_{\Omega} \Psi'(|\nabla u|) ((|\nabla u|)_{x_j} u_{x_j} f + (|\nabla u|)_{x_i} u_{x_j} u_{x_i x_j}) dx \leq \int_{\Omega} \Psi(|\nabla u|) f^2 dx$$
(4)

with a properly chosen Ψ . The proof will be published elsewhere.

3. Neumann problem in a convex polyhedron

The following assertion essentially stemming from the above theorem is a particular case of Escobar's result in [6] mentioned in the Introduction:

Corollary. Let ω be a convex subdomain of the unit sphere S^{n-1} . The first positive eigenvalue Λ of the Beltrami operator on ω with zero Neumann data on $\partial \omega$ is not less than n - 1.

Proof. Let $\lambda(\lambda + n - 2) = \Lambda$ and $\lambda > 0$. In the convex domain $\Omega = \{x \in \mathbb{R}^n : 0 < |x| < 1, x|x|^{-1} \in \omega\}$, we define the function $u(x) = |x|^{\lambda} \Phi(x/|x|)\eta(|x|)$, where Φ is an eigenfunction corresponding to Λ and η is a smooth cut-off function on $[0, \infty)$, equal to one on [0, 1/2] and vanishing outside [0, 1]. Let N be an integer satisfying $4N > n - 1 \ge 4(N - 1)$ and let j = 0, 1, ..., N. We set $q_j = 2(n - 1)/(n - 1 - 4j)$ if $0 \le j < (n - 1)/4$, q_j is arbitrary if

j = (n-1)/4, and $q_N = \infty$. Iterating the estimate $\|\Phi\|_{L^{q_{j+1}}(\omega)} \leq c\Lambda \|\Phi\|_{L^{q_j}(\omega)}$ obtained in Theorems 5 and 6 [19], we see that $\Phi \in L^{\infty}(\omega)$.

The function *u* satisfies the problem (1) with $f(x) = -\Phi(x/|x|)[\Delta, \eta(|x|)]|x|^{\lambda}$. Since $\Phi \in L^{\infty}(\omega)$, it follows that $f \in L^{\infty}(\Omega)$ and by Theorem, $|\nabla u| \in L^{\infty}(\Omega)$, which is possible only if $\lambda \ge 1$, i.e. $\Lambda \ge n-1$. The proof is complete. Two applications of the above estimate for Λ will be formulated.

Let Ω be a convex bounded 3-dimensional polyhedron. By the techniques, well-known nowadays (see [5,22]), one can show the unique solvability of the variational Neumann problem in $W_{\perp}^{1,p}(\Omega)$ for every $p \in (1, \infty)$. By definition of this problem, its solution is subject to the integral identity

$$\int_{\Omega} \nabla u \cdot \nabla \eta \, \mathrm{d}x = f(\eta),$$

where $f \in (W^{1,p'}(\Omega))^*$, f(1) = 0 and η is an arbitrary function in $W^{1,p'}(\Omega)$.

Let us turn to the second application of Corollary. We continue to deal with the polyhedron Ω in \mathbb{R}^3 . Let $\{\mathcal{O}\}$ be the collection of all vertices and let $\{U_{\mathcal{O}}\}$ be an open finite covering of $\overline{\Omega}$ such that \mathcal{O} is the only vertex in $U_{\mathcal{O}}$. Let also $\{E\}$ be the collection of all edges and let α_E denote the opening of the dihedral angle with edge E, $0 < \alpha_E < \pi$. The notation $r_E(x)$ stands for the distance between $x \in U_{\mathcal{O}}$ and the edge E such that $\mathcal{O} \in \overline{E}$.

With every vertex \mathcal{O} and edge E we associate real numbers $\beta_{\mathcal{O}}$ and δ_E , and we introduce the weighted L^p -norm

$$\|v\|_{L^{p}(\Omega;\{\beta_{\mathcal{O}}\},\{\delta_{E}\})} := \left(\sum_{\{\mathcal{O}\}_{U_{\mathcal{O}}}} \int |x-\mathcal{O}|^{p\beta_{\mathcal{O}}} \prod_{\{E:\mathcal{O}\in\overline{E}\}} \left(\frac{r_{E}(x)}{|x-\mathcal{O}|}\right)^{p\delta_{E}} |v(x)|^{p} dx\right)^{1/p},$$

where $1 . Under the conditions <math>3/p' > \beta_{\mathcal{O}} > -2 + 3/p'$ and $2/p' > \delta_E > -\min\{2, \pi/\alpha_E\} + 2/p'$ the inclusion $f \in L^p(\Omega; \{\beta_{\mathcal{O}}\}, \{\delta_E\})$ implies the unique solvability of (1) in the class of functions with all derivatives of the second order in $L^p(\Omega; \{\beta_{\mathcal{O}}\}, \{\delta_E\})$. This fact follows from Corollary and a result in Section 7.5 [22].

An important particular case when all $\beta_{\mathcal{O}}$ and δ_E vanish, i.e. when we deal with a standard Sobolev space $W^{2,p}(\Omega)$, is also included here. To be more precise, if 1 for all edges <math>E, then the inverse operator of the problem (1): $L^p_{\perp}(\Omega) \ni f \to u \in W^{2,p}_{\perp}(\Omega)$ is continuous whatever the convex polyhedron $\Omega \subset \mathbb{R}^3$ may be. The above bounds for p are sharp for the class of all convex polyhedra. \Box

References

- [1] V. Adolfsson, L^p-integrability of the second order derivatives of Green potentials in convex domains, Pacific J. Math. 159 (2) (1993) 201–225.
- [2] V. Adolfsson, D. Jerison, L^p-integrability of the second order derivatives for the Neumann problem in convex domains, Indiana Univ. Math. J. 43 (4) (1994) 1123–1138.
- [3] S.N. Bernshtein, Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre, Math. Ann. 59 (1–2) (1904) 20–76.
- [4] M.S. Birman, G.E. Skvortsov, On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary, (Russian) Izv. Vysš. Učebn. Zav. Matem. 5 (30) (1962) 11–21.
- [5] M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory 15 (2) (1992) 227-261.
- [6] J.F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities and an eigenvalue estimate, Commun. Pure Appl. Math. XLIII (1990) 857–883.
- [7] S.J. Fromm, Potential space estimates for Green potentials in convex domains, Proc. AMS 119 (1) (1993) 225-233.
- [8] S.J. Fromm, Regularity of the Dirichlet problem in convex domains in the plane, Michigan Math. J. 41 (3) (1994) 491–507.
- [9] S.J. Fromm, D. Jerison, Third derivative estimates for Dirichlet's problem in convex domains, Duke Math. J. 73 (2) (1994) 257–268.
- [10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
- [11] T. Jakab, I. Mitrea, M. Mitrea, Sobolev estimates for the Green potential associated with the Robin–Laplacian in Lipschitz domains satisfying a uniform exterior ball condition, in: Sobolev Spaces in Mathematics II, Applications in Analysis and Partial Differential Equations, in: International Mathematical Series, vol. 9, Springer, 2008.
- [12] J. Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, (Russian) Czechoslovak Math. J. 14 (89) (1964) 386–393.
- [13] V. Kozlov, V. Maz'ya, Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary, Ann. Mat. Pura Appl. 184 (2005) 185–213.
- [14] O.A. Ladyzhenskaya, Closure of an elliptic operator, (Russian) Dokl. Akad. Nauk SSSR 79 (1951) 723-725.
- [15] O.A. Ladyzhenskaya, Smeshannaya Zadacha dlya Giperbolicheskogo Uravneniya. (Russian) [The Mixed Problem for a Hyperbolic Equation], Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953.

- [16] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
- [17] V.G. Maz'ya, Solvability in \mathring{W}_2^2 of the Dirichlet problem in a region with smooth irregular boundary, Vestnik Leningrad. Univ. 22 (7) (1967) 87–95.
- [18] V.G. Maz'ya, The boundedness of the first derivatives of the solution of the Dirichlet problem in a region with smooth nonregular boundary, (Russian) Vestnik Leningrad. Univ. 24 (1) (1969) 72–79.
- [19] V.G. Maz'ya, On weak solutions of the Dirichlet and Neumann problems, Trans. Moscow Math. Soc. 20 (1969) 135-172.
- [20] V.G. Maz'ya, The coercivity of the Dirichlet problem in a domain with irregular boundary, Izv. Vysš. Učebn. Zav. Matem. 4 (1973) 64–76.
- [21] V.G. Maz'ya, Sobolev Spaces, Springer, 1985.
- [22] V. Maz'ya, J. Rossmann, Weighted L_p estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech. 83 (7) (2003) 435–467.
- [23] J. Schauder, Sur les équations linéaires du type élliptique à coefficients continus, C. R. Acad. Sci. Paris 199 (1934) 1366-1368.
- [24] S.L. Sobolev, Sur la presque périodicité des solutions de l'équations des ondes. I, C. R. de l'Acad. Sci. de l'URSS 48 (1945) 542–545; S.L. Sobolev, Sur la presque périodicité des solutions de l'équations des ondes. II, C. R. de l'Acad. Sci. de l'URSS 48 (1945) 618–620.