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Abstract

This Note is devoted to the representation of Sobolev weak solutions to quasi-linear parabolic PDEs with monotone coefficients
via FBSDEs. One distinctive character of this result is that the forward component of the FBSDE is coupled with the backward
variable. To cite this article: F. Zhang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions faibles de Sobolev des EDP paraboliques et des EDSR. Cette Note est consacré à la représentation des solutions
faibles au sens de Sobolev d’une EDP quasi-linéaire parabolique avec des coefficients monotones par un système d’EDS et d’EDSR.
Un caractère distinctif de ce résultat est que la composante de l’EDS est couplée avec les solutions d’EDSR. Pour citer cet
article : F. Zhang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we consider the following quasi-linear parabolic partial differential equation (PDE for short):{
∂
∂t

u(t, x) + Lu(t, x) + g(t, x,u(t, x), (σ ∗∇u)(t, x)) = 0 ∀(t, x) ∈ [0, T ) × R
d,

u(T , x) = h(x) ∀x ∈ R
d,

(1)

where Lu = ∑d
i=1 bi(t, x,u) ∂u

∂xi
+ 1

2

∑d
i,j=1 ai,j

∂2u
∂xi∂xj

, (b1, . . . , bd)∗ = b, (ai,j ) = σσ ∗. It is worth noting that the
coefficient b depends on the solution variable u. We will conclude that PDE (1) admits a unique weak solution in the
Sobolev spaces. The method consists in relating it to the following forward backward stochastic differential equation
(FBSDE):{

X
t,x
s = x + ∫ s

t
b(r,X

t,x
r , Y

t,x
r )dr + ∫ s

t
σ (r,X

t,x
r )dWr,

Y
t,x
s = h(X

t,x
T ) + ∫ T

s
g(r,X

t,x
r , Y

t,x
r ,Z

t,x
r )dr − ∫ T

s
Z

t,x
r · dWr.

(2)
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FBSDEs can be used to give the probabilistic interpretation of certain quasi-linear parabolic PDEs. Under smooth
coefficients assumptions the PDE has a classical solution. However, if its coefficients are not smooth enough, the PDE
has to be solved in a weak way. Two notions of weak solutions can be used for the PDE. One is the viscosity solution,
which was first introduced by Crandall and Lions for first-order Hamilton–Jacobi equations. This link with FBSDEs
has been done by Peng [7], Pardoux and Peng [5], Pardoux and Tang [6]. Another way of defining weak solutions of
PDEs, which is more classical, is the notion of Sobolev weak solutions. Barles and Lesigne [3] were the first to use this
approach to connect quasi-linear PDEs with FBSDEs. Bally and Matoussi [2] studied the solution in Sobolev spaces
of the quasi-linear stochastic PDE in terms of the backward doubly stochastic differential equation (BDSDE) with
Lipschitz coefficients. Ouknine and Turpin [4] studied the Sobolev weak solutions of parabolic PDEs under weaker
assumptions.

It is worth noting that, unlike the papers in which the viscosity solutions of PDEs were studied, to the author’s
knowledge, in all literature related to the Sobolev weak solutions of parabolic PDEs via FBSDEs, the forward equation
in the FBSDE is completely decoupled from the backward one. Our paper is the first attempt to consider the Sobolev
solutions of parabolic PDEs via FBSDEs whose forward component is coupled with the backward one. To be precise,
the coefficient b depends on the variable y.

In the second part of this Note, some notations and known results about Sobolev weak solutions are given. In the
third part, we state our main result, which gives the unique Sobolev weak solution of PDE (1) through the solution of
FBSDE (2).

2. Preliminaries

Let (Ω,F ,P) be a probability space, T > 0 and {Wt,0 � t � T } a d-dimensional standard Brownian motion.
Let F s

t be the filtration generated by {Wr − Wt, t � r � s}, augmented with the P-null sets of F . For n ∈ N, let
M2(t, T ;R

n) denote the set of n-dimensional F s
t -progressively measurable processes {ϕs, t � s � T } such that

E
∫ T

t
|ϕs |2 dt < ∞. Similarly, let S2(t, T ;R

n) denote the set of n-dimensional F s
t -progressively measurable contin-

uous processes {ϕs, t � s � T } such that E supt�s�T |ϕs |2 < ∞.
Suppose ρ : Rd → R

+ is a continuous function such that
∫

Rd (1 + |x|2)ρ(x)dx < ∞ and L2(Rd , ρ(x)dx) is the
space of ϕ : Rd → R such that

∫
Rd |ϕ(x)|2ρ(x)dx < ∞. We denote by H the set of {u(t, x),0 � t � T ,x ∈ R

d}
such that u, σ ∗∇u belong to L2((0, T ) × R

d ;ds ⊗ ρ(x)dx). H is a Banach space endowed with the norm
‖u‖2

H := ∫
Rd

∫ T

t
(|u(s, x)|2 + |(σ ∗∇u)(s, x)|2)ds ρ(x)dx. Here and in the sequel, the derivatives are understood in

the distribution sense.

Definition 1. We say that u is a Sobolev weak solution of PDE (1) if u ∈ H and for any ϕ ∈ C 1,∞
c ([0, T ] × R

d),

∫
Rd

T∫
t

u(s, x)∂sϕ(s, x)ds dx +
∫
Rd

u(t, x)ϕ(t, x)dx −
∫
Rd

h(x)ϕ(T , x)dx

− 1

2

∫
Rd

T∫
t

(σ ∗∇u)(s, x) · (σ ∗∇ϕ)(s, x)ds dx −
∫
Rd

T∫
t

udiv
(
(b − A)ϕ

)
(s, x)ds dx

=
∫
Rd

T∫
t

g
(
s, x,u(s, x), (σ ∗∇u)(s, x)

)
ϕ(s, x)ds dx,

where A = (A1, . . . ,Ad)∗, Aj = 1
2

∑d
i=1

∂aij

∂xi
,1 � j � d .

For the special case when the coefficient b is independent of u in PDE (1) and independent of y in FBSDE (2), we
have the following two results from Ouknine and Turpin [4]. Assume b : [0, T ] × R

d × R → R
d , σ : [0, T ] × R

d →
R

d×d , g : [0, T ] × R
d × R × R

d → R and h : Rd → R satisfy

(A1) b, σ are bounded continuous functions and there exists K > 0 such that
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∣∣b(t, x1) − b(t, x1)
∣∣ + ∣∣σ(t, x1) − σ(t, x2)

∣∣ � K|x1 − x2|.
Moreover, |(σ ∗∇σ)(t, x1) − (σ ∗∇σ)(t, x2)| � K|x1 − x2|.

(A2) There exists K > 0 such that |g(t, x, y1, z1) − g(t, x, y2, z2)| � K(|y1 − y2| + |z1 − z2|).
(A3)

∫
Rd

∫ T

0 |g(t, x,0,0)|2 dt ρ(x)dx < ∞,
∫

Rd |h(x)|2ρ(x)dx < ∞.

Proposition 2 (Proposition 3.1 in [4]). Assume (A1). Then there exist two positive constants k̄, K̄ such that for any
t � s � T and φ ∈ L1(Rd , ρ(x)dx), k̄

∫
Rd |φ(x)|ρ(x)dx �

∫
Rd E(|φ(X

t,x
s )|)ρ(x)dx � K̄

∫
Rd |φ(x)|ρ(x)dx.

Moreover, for any Φ ∈ L1((0, T ) × R
d,dt ⊗ ρ(x)dx), k̄

∫
Rd

∫ T

t
|Φ(s, x)|dsρ(x)dx �

∫
Rd

∫ T

t
E(|Φ(s,X

t,x
s )|)

ds ρ(x)dx � K̄
∫

Rd

∫ T

t
|Φ(s, x)|ds ρ(x)dx.

From Lemma 4.1 and Theorem 4.8 in [4], we have

Proposition 3. Assume (A1)–(A3). Then PDE (1) admits a unique Sobolev weak solution u. Moreover,

u
(
s,Xt,x

s

) = Y t,x
s , (σ ∗∇u)

(
s,Xt,x

s

) = Zt,x
s , a.s., a.e. s ∈ [t, T ], x ∈ R

d,

where (Xt,x, Y t,x,Zt,x) is the unique solution of FBSDE (2).

3. Sobolev weak solutions for PDEs in which b depends on u

In this section we consider the Sobolev weak solution of PDE (1) and relate it to the solution of FBSDE (2).
Suppose b : [0, T ] × R

d × R → R
d , σ : [0, T ] × R

d → R
d×d , g : [0, T ] × R

d × R × R
d → R and h : Rd → R satisfy

(H1) b, σ are bounded continuous functions and there exists K > 0 such that∣∣b(t, x1, y1) − b(t, x1, y2)
∣∣ � K

(|x1 − x2| + |y1 − y2|
);∣∣σ(t, x1) − σ(t, x2)

∣∣ + ∣∣(σ ∗∇σ)(t, x1) − (σ ∗∇σ)(t, x2)
∣∣ � K|x1 − x2|.

(H2) g is continuous in y and there exist K > 0, μ ∈ R such that∣∣g(t, x1, y, z1) − g(t, x2, y, z2)
∣∣ � K

(|x1 − x2| + |z1 − z2|
);

(y1 − y2)
(
g(t, x, y1, z) − g(t, x, y2, z)

)
� μ|y1 − y2|2;∣∣g(t, x, y, z)

∣∣ �
∣∣g(t,0,0,0)

∣∣ + K
(
1 + |x| + |y| + |z|).

(H3)
∫ T

0 |g(t,0,0,0)|2 dt < ∞.
(H4) There exists K > 0 such that |h(x1) − h(x2)| � K|x1 − x2|.

Following Antonelli [1], we can easily obtain

Proposition 4. Assume (H1)–(H4). Then there exists T0 > 0 which depends on K , μ, such that when T � T0, FBSDE
(2) admits a unique solution (Xt,x, Y t,x,Zt,x) ∈ S2(t, T ;R

d) × S2(t, T ;R) × M2(t, T ;R
d) on [t, T ]. Moreover,

(i) there exists C1 > 0 which depends on K , μ such that E supt�s�T |Xt,x
s |2 +E supt�s�T |Y t,x

s |2 +E
∫ T

t
|Zt,x

s |2 ds �
C1(1 + |x|2 + |h(0)|2 + ∫ T

t
(|b(s,0,0)|2 + |σ(s,0)|2 + |g(s,0,0,0)|2)ds);

(ii) there exists C2 > 0 which depends on K , μ such that E supt�s�T |Xt,x
s − X

t,x′
s |2 + E supt�s�T |Y t,x

s − Y
t,x′
s |2 +

E
∫ T

t
|Zt,x

s − Z
t,x′
s |2 ds � C2

2 |x − x′|2.

We are now in a position to state our main result:

Theorem 5. Assume (H1)–(H4). Then
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(i) PDE (1) admits a local Sobolev weak solution u such that

u
(
s,Xt,x

s

) = Y t,x
s , (σ ∗∇u)

(
s,Xt,x

s

) = Zt,x
s , a.s., a.e. s ∈ [t, T ], x ∈ R

d, (3)

where (Xt,x, Y t,x,Zt,x) is the unique solution of FBSDE (2).
(ii) If u is the Sobolev weak solution of PDE (1) and is assumed to be Lipschitz continuous in x, then u is unique.

Proof. We first prove (i). By Proposition 4, there exists T0 = T0(K,μ) > 0 such that when T � T0, FBSDE (2) admits
a unique solution (Xt,x, Y t,x,Zt,x) on [t, T ]. If we define u(t, x) = Y

t,x
t , v(t, x) = Z

t,x
t for (t, x) ∈ [0, T ] × R

n, then
u, v are deterministic functions and |u(t, x) − u(t, x′)| � C2|x − x′|. Moreover, from the uniqueness of the solutions
to FBSDE (2), using the similar technique in Wu and Yu [8], we obtain

u
(
s,Xt,x

s

) = Y s,X
t,x
s

s = Y t,x
s , v

(
s,Xt,x

s

) = Zs,X
t,x
s

s = Zt,x
s a.s., a.e. s ∈ [t, T ]. (4)

Set b̄(s, x) = b(s, x,u(s, x)), ḡ(s, x) = g(s, x,u(s, x), v(s, x)). Then (Xt,x, Y t,x,Zt,x) solves{
X

t,x
s = x + ∫ s

t
b̄(r,X

t,x
r )dr + ∫ s

t
σ (r,X

t,x
r )dWr,

Y
t,x
s = h

(
X

t,x
T

) + ∫ T

s
ḡ
(
r,X

t,x
r

)
dr − ∫ T

s
Z

t,x
r · dWr.

(5)

It’s easy to check that |b̄(t, x)− b̄(t, x′)| � (1+C2)K|x −x′|. Hence, b̄ is Lipschitz in x. By Propositions 2, 4 and (4),
there exists C3 = C3(K,μ, k̄, K̄, T ) > 0 such that

∫ T

t

∫
Rd (|u(s, x)|2 + |v(s, x)|2)ρ(x)dx ds � C3

∫
Rd (1 + |h(0)|2 +

|x|2)ρ(x)dx + C3
∫ T

t
(|b(s,0,0)|2 + |σ(s,0)|2 + |g(s,0,0,0)|2)ds

∫
Rd ρ(x)dx < ∞.

Consequently, it follows from (H2) and the definition of ḡ that
∫ T

t

∫
Rd |ḡ(s, x)|2ρ(x)dx ds � 5K2

∫ T

t

∫
Rd (|u(s, x)|2

+ |v(s, x)|2)ρ(x)dx ds + 5
∫ T

t
|g(s,0,0,0)|2 ds

∫
Rd ρ(x)dx + 5K2T

∫
Rd (1 + |x|2)ρ(x)dx < ∞. So the functions b̄,

σ , ḡ, h satisfy (A1)–(A3). Hence, Proposition 3 follows that v = σ ∗∇u and u is the Sobolev weak solution of the
following PDE{

∂u
∂t

+ ∑d
i=1 b̄i (t, x) ∂u

∂xi
+ 1

2

∑d
i,j=1(σσ ∗)i,j (t, x) ∂2u

∂xi∂xj
+ ḡ(t, x) = 0,

u(T , x) = h(x).
(6)

Noting the definitions of b̄, ḡ and the fact that v = σ ∗∇u, we can easily conclude that u is the Sobolev weak solution
of PDE (1). And (3) is the immediate consequence of (4).

We now prove (ii). Suppose u is the Sobolev weak solution of PDE (1) and is Lipschitz continuous in x. If
we set b̄(s, x) = b(s, x,u(s, x)), ḡ(s, x) = g(s, x,u(s, x), (σ ∗∇u)(s, x)), then b̄ is Lipschitz continuous in x and∫

Rd

∫ T

t
|ḡ(s, x)|2 ds ρ(x)dx < ∞. With the similar idea used in the proof of the uniqueness in Theorem 4.8 in [4],

it easily follows that {Xt,x
s , u(s,X

t,x
s ), (σ ∗∇u)(s,X

t,x
s ), t � s � T } solves FBSDE (5). Hence, the uniqueness of the

solutions of PDE (1) is a consequence of the uniqueness of the solutions of FBSDE (2). �
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