

Available online at www.sciencedirect.com





C. R. Acad. Sci. Paris, Ser. I 347 (2009) 555-558

Numerical Analysis

# A residual based a posteriori estimator for the reaction-diffusion problem

Mika Juntunen, Rolf Stenberg

Helsinki University of Technology (TKK), Department of Mathematics and Systems Analysis, P.O. Box 1100, 02015 TKK, Finland

Received 22 February 2009; accepted 16 March 2009

Available online 5 April 2009

Presented by Olivier Pironneau

#### Abstract

A residual based a posteriori estimator for the reaction-diffusion problem is introduced. We show that the estimator gives both an upper and a lower bound to error. Numerical results are presented. *To cite this article: M. Juntunen, R. Stenberg, C. R. Acad. Sci. Paris, Ser. I 347 (2009).* 

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## Résumé

Un estimateur d'erreur de type résiduel pour la probleme de réaction-diffusion. Nous preséntons une estimateur a posteriori de la probleme de réaction-diffusion. Nous montrons que l'estimateur donne à la fois une borne supérieure et une borne inférieure de l'erreur. Quelques résultats numériques sont présenté. *Pour citer cet article : M. Juntunen, R. Stenberg, C. R. Acad. Sci. Paris, Ser. I 347 (2009).* 

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

We consider the finite element approximation of the reaction-diffusion problem

$$-\varepsilon^2 \Delta u + u = f \quad \text{in } \Omega \quad \text{and} \quad u = 0 \quad \text{on } \partial \Omega, \tag{1}$$

with the parameter  $\varepsilon > 0$ . For  $\varepsilon \gtrsim 1$  the problem is a standard elliptic equation. We are, however, interested in the case of a "small"  $\varepsilon \ll 1$ . In this case, the problem is a singularly perturbed problem, and the question is how to incorporate the effect of  $\varepsilon$  into the finite element a posteriori analysis. The problem has been studied for example in [4,1]. Here we introduce and analyze an alternative a posteriori estimator. In [2], this is extended to the Brinkman equations modeling flow in porous media.

E-mail addresses: mika.juntunen@tkk.fi (M. Juntunen), rolf.stenberg@tkk.fi (R. Stenberg).

<sup>1631-073</sup>X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.03.010

#### 2. The a posteriori error estimate

Let  $\Omega \subset \mathbb{R}^n$  be a domain with a polygonal or a polyhedral boundary  $\partial \Omega$ . We assume a shape regular triangular/tetrahedral partitioning  $C_h$  of the domain  $\Omega$ . With  $h_K$  we denote the diameter of  $K \in C_h$  and we let  $h = \max h_K$ . With  $\mathcal{E}_h$  we denote the internal edges (faces in 3D) of  $\mathcal{C}_h$ . The constant *C* is a generic constant independent of the mesh size and problem parameter  $\varepsilon$ .

Defining the bilinear form

$$\mathcal{A}(u,v) = \varepsilon^2 (\nabla u, \nabla v) + (u,v), \tag{2}$$

the weak form of the problem is: find  $u \in V$  such that

$$\mathcal{A}(u,v) = (f,v) \quad \forall v \in H_0^1(\Omega).$$
(3)

Defining  $V_h = \{v \in H_0^1(\Omega) \mid v_{|K} \in P_k(K) \forall K \in C_h\}$ , the finite element method is: find  $u_h \in V_h$  such that

$$\mathcal{A}(u_h, v) = (f, v) \quad \forall v \in V_h.$$
(4)

The natural energy norm is

$$\|v\|_{\varepsilon}^{2} = \varepsilon^{2} \|\nabla v\|_{0}^{2} + \|v\|_{0}^{2}, \tag{5}$$

and the finite element solution is the best approximation with respect to this norm

$$\|u - u_h\|_{\varepsilon} = \inf_{v \in V_h} \|u - v\|_{\varepsilon}.$$
(6)

In general, the problem has a boundary layer of the form  $e^{-d/\varepsilon}$ , where d is the distance from the boundary. Hence, even for a smooth load f, a uniform mesh will only lead to the following estimate:

$$\|u - u_h\|_{\varepsilon} \leqslant C\sqrt{h} \tag{7}$$

uniformly valid with respect to  $\varepsilon$ . For a smooth solution the estimate obtained is

$$\|u - u_h\|_{\varepsilon} \leqslant C(\varepsilon h^k + h^{k+1}).$$
(8)

To improve the convergence, adaptive mesh refinement is natural. Here, we introduce a novel residual based a posteriori estimator. The elementwise estimator is defined as

$$E_K(u_h)^2 = \frac{h_K^2}{\varepsilon^2 + h_K^2} \left\| \varepsilon^2 \Delta u_h - u_h + f \right\|_{0,K}^2 + \frac{h_K}{\varepsilon^2 + h_K^2} \left\| \left[ \varepsilon^2 \partial_n u_h \right] \right\|_{0,\partial K \cap \mathcal{E}_h}^2$$
(9)

and the global estimator is

$$\eta = \left(\sum_{K \in \mathcal{C}_h} E_K(u_h)^2\right)^{1/2}.$$
(10)

Above  $\llbracket \cdot \rrbracket$  denotes the jump and  $\partial_n$  denotes the normal derivative.

If  $\varepsilon \gtrsim 1$ , the elementwise estimator recovers the usual estimator for second order elliptic equations

$$E_K(u_h)^2 \approx h_K^2 \left\| \varepsilon^2 \Delta u_h - u_h + f \right\|_{0,K}^2 + h_K \left\| \left\| \varepsilon^2 \partial_n u_h \right\| \right\|_{0,\partial K \cap \mathcal{E}_h}^2$$

On the other hand, in the limit  $\varepsilon \to 0$  (or  $\varepsilon \ll h$ ), when the FE solution is the  $L^2$ -projection of the loading, we have  $E_K(u_h)^2 \approx ||-u_h + f||_{0,K}^2$ .

For our analysis we will need a saturation assumption. The partitioning  $C_h$  is refined into  $C_{h/2}$  by dividing each triangle/tetrahedron K into four/eight elements with mesh size  $h_K/2$ . By  $u_{h/2} \in V_{h/2}$  we denote the finite element solution on the refined mesh.

Assumption 2.1. There exists a positive constant  $\beta < 1$  such that

$$\|u - u_{h/2}\|_{\varepsilon} \leq \beta \|u - u_h\|_{\varepsilon}.$$
(11)

The main result is the following theorem:

# **Theorem 2.2.** Let Assumption 2.1 hold. Then there exists C > 0 such that

$$\|u - u_h\|_{\varepsilon} \leqslant C\eta. \tag{12}$$

**Proof.** By the triangle inequality the saturation assumption gives

$$\|u-u_h\|_{\varepsilon} \leqslant \frac{C}{1-\beta} \big(\|u_{h/2}-u_h\|_{\varepsilon}\big). \tag{13}$$

Next, with  $v = (u_{h/2} - u_h) / ||u_{h/2} - u_h||_{\varepsilon}$ , we have

$$\|u_{h/2} - u_h\|_{\varepsilon} = \mathcal{A}(u_{h/2} - u_h, v) \tag{14}$$

and  $||v||_{\varepsilon} = 1$ . Let  $\tilde{v} \in V_h$  be the Lagrange interpolant of v. Since both v and  $\tilde{v}$  are in the finite element spaces, scaling arguments give

$$\left(\sum_{K \in \mathcal{C}_{h/2}} \left(\frac{\varepsilon + h_K}{h_K}\right)^2 \|v - \tilde{v}\|_{0,K}^2\right)^{1/2} \leqslant C \left(\sum_{K \in \mathcal{C}_{h/2}} \left(\varepsilon^2 \|\nabla v\|_{0,K}^2 + \|v\|_{0,K}^2\right)\right)^{1/2} = C \|v\|_{\varepsilon} = C \tag{15}$$

and

$$\left(\sum_{K \in \mathcal{C}_{h/2}} \frac{\varepsilon^2 + h_K^2}{h_K} \|v - \tilde{v}\|_{0,\partial K}^2\right)^{1/2} \leqslant C \left(\sum_{K \in \mathcal{C}_{h/2}} \frac{\varepsilon^2 + h_K^2}{h_K} h_K^{-1} \|v - \tilde{v}\|_{0,K}^2\right)^{1/2} \\
= C \left(\sum_{K \in \mathcal{C}_{h/2}} \left(\frac{\varepsilon^2}{h_K^2} + 1\right) \|v - \tilde{v}\|_{0,K}^2\right)^{1/2} \leqslant C \left(\sum_{K \in \mathcal{C}_{h/2}} \left(\varepsilon^2 \|\nabla v\|_{0,K}^2 + \|v\|_{0,K}^2\right)\right)^{1/2} = C \|v\|_{\varepsilon} = C.$$
(16)

Since it holds  $\mathcal{A}(u_{h/2} - u_h, \tilde{v}) = 0$ , we have

$$\mathcal{A}(u_{h/2} - u_h, v) = \mathcal{A}(u_{h/2} - u_h, v - \tilde{v}).$$

$$\tag{17}$$

Using the fact that  $u_{h/2}$  satisfies

 $\mathcal{A}(u_{h/2}, v - \tilde{v}) = (f, v - \tilde{v})$ (18)

and integrating by parts, we get

$$\mathcal{A}(u_{h/2} - u_h, v - \tilde{v}) = (f, v - \tilde{v}) - \varepsilon^2 (\nabla u_h, \nabla (v - \tilde{v})) - (u_h, v - \tilde{v})$$
  
= 
$$\sum_{K \in \mathcal{C}_{h/2}} \{ (\varepsilon^2 \Delta u_h - u_h + f, v - \tilde{v})_K + \varepsilon^2 \langle \partial_n u_h, v - \tilde{v} \rangle_{\partial K \cap \mathcal{E}_{h/2}} \}.$$
 (19)

Using Schwartz inequality and the estimates (15)–(16) we then obtain

$$\mathcal{A}(u_{h/2} - u_h, v - \tilde{v}) \leqslant C\eta. \qquad \Box \tag{20}$$

The a posteriori upper bound  $\eta$  is also a lower bound to the error. In this sense the estimator is sharp. The proof of the following theorem uses classical techniques, see [3]:

**Theorem 2.3.** Let  $f_h \in V_h$  be an approximation of the load f. Then there exist C > 0 such that

$$\eta^{2} \leqslant C \bigg\{ \|u - u_{h}\|_{\varepsilon}^{2} + \sum_{K \in \mathcal{C}_{h}} \bigg( \frac{h_{K}^{2}}{\varepsilon^{2} + h_{K}^{2}} \|f - f_{h}\|_{0,K}^{2} \bigg) \bigg\}.$$
(21)



Fig. 1. Upper panels: Convergence for uniform and adaptive meshes for parameter values  $\varepsilon = 0.05$  and  $\varepsilon = 0.01$ . Lower panels: First three meshes of the adaptive scheme using linear elements and parameter value  $\epsilon = 0.05$ .

## 3. Numerical results

For the computations we choose the unit square  $\Omega = (0, 1) \times (0, 1)$  and a unit load f = 1. For the number of degrees of freedom N, the uniform estimate (7) and the asymptotic estimate (8) become

$$||u - u_h||_{\varepsilon} \leq CN^{-0.25}$$
 and  $||u - u_h||_{\varepsilon} \leq C(\varepsilon N^{-k/2} + N^{-(k+1)/2}),$  (22)

respectively. In Fig. 1 this behavior is seen for linear and quadratic elements (k = 1, 2).

# References

- M. Ainsworth, I. Babuška, Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal. 36 (2) (1999) 331–353.
- [2] M. Juntunen, R. Stenberg, Analysis of finite element methods for the Brinkman problem, Helsinki University of Technology Institute of Mathematics Research Report A 557 (2009), submitted for publication.
- [3] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Teubner Verlag and J. Wiley, Stuttgart, 1996.
- [4] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math. 78 (3) (1998) 479-493.