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Abstract

In this Note we establish a Hasse principle concerning the linear dependence over Z of nontorsion points in the Mordell–Weil
group of an abelian variety over a number field. To cite this article: G. Banaszak, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un principe de Hasse pour les groupes de Mordell–Weil. Dans cette Note, on démontre un principe de Hasse concernant la
dépendance linéaire sur Z des points d’ordre infini dans le groupe de Mordell–Weil d’une variété abélienne définie sur un corps de
nombres. Pour citer cet article : G. Banaszak, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit A une variété abélienne définie sur un corps de nombres F . Soient v un idéal premier de OF et kv := OF /v.
Soit Av la réduction de A pour un idéal premier v de bonne réduction. Soit,

rv :A(F) → Av(kv),

le morphisme de réduction. On pose R := EndF (A). Soit Λ une sous-groupe de A(F) et soit P ∈ A(F). Une question
naturelle est : La condition rv(P ) ∈ rv(Λ), pour presque tout idéal premier v de OF , implique-t-elle P ∈ Λ ? Cette
question a eté posée par W. Gajda en 2002. Le résultat fondamental de cette Note est le théorème suivant :

Théorème 0.1. Soient P1, . . . ,Pr des éléments de A(F) linéairement indépendants sur l’anneau R. Soit P un point
de A(F) tel que RP soit un R-module libre. Les conditions suivantes sont équivalentes :

(1) P ∈ ∑r
i=1 ZPi ;

(2) rv(P ) ∈ ∑r
i=1 Zrv(Pi) pour presque tout idéal premier v de OF .
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1631-073X/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let A be an abelian variety over a number field F . Let v be a prime of OF and let kv := OF /v. Let Av denote the
reduction of A for a prime v of good reduction and let,

rv :A(F) → Av(kv),

be the reduction map. Put R := EndF (A). Let Λ be a subgroup of A(F) and let P ∈ A(F). A natural question is
whether the condition rv(P ) ∈ rv(Λ) for almost all primes v of OF implies that P ∈ Λ. This question was posed by
W. Gajda in 2002. The main result of this Note is the following theorem:

Theorem 1.1. Let P1, . . . ,Pr be elements of A(F) linearly independent over R. Let P be a point of A(F) such that
RP is a free R module. The following conditions are equivalent:

(1) P ∈ ∑r
i=1 ZPi ;

(2) rv(P ) ∈ ∑r
i=1 Zrv(Pi) for almost all primes v of OF .

In the case of the multiplicative group F× the problem analogous to W. Gajda’s question has already been solved
by 1975. Namely, A. Schinzel, [16, Theorem 2, p. 398], proved that for any γ1, . . . , γr ∈ F× and β ∈ F× such that
β = ∏r

i=1 γ
nv,i

i mod v with nv,1, . . . , nv,r ∈ Z for almost all primes v of OF there are n1, . . . , nr ∈ Z such that
β = ∏r

i=1 γ
ni

i . The theorem of A. Schinzel was proved again by Ch. Khare [11] using methods of C. Corralez-
Rodrigáñez and R. Schoof [6]. Ch. Khare applied this theorem to prove that every family of one-dimensional strictly
compatible l-adic representations comes from a Hecke character.

Theorem 1.1 strengthens the results of [2,8,19]. Namely T. Weston [19] obtained a result analogous to Theorem 1.1
with coefficients in Z for R commutative. T. Weston did not assume that P1, . . . ,Pr are linearly independent over R,
however there was some torsion ambiguity in the statement of his result. In [2], together with W. Gajda and P. Kra-
soń, we proved Theorem 1.1 for elliptic curves without CM and more generally for a class of abelian varieties with
EndF (A) = Z. We also got a general result for all abelian varieties [2, Theorem 2.9], in the direction of Theorem 1.1.
However in Theorem 2.9 [2], the coefficients associated with points P1, . . . ,Pr are in R and the coefficient associated
with the point P is in the set of positive integers N. W. Gajda and K. Górnisiewicz [8, Theorem 5.1], strengthened
Theorem 2.9 of [2] by implementing some techniques of M. Larsen and R. Schoof [12]. They proved that the coef-
ficient associated with the point P is equal to 1. Nevertheless the coefficients associated with points P1, . . . ,Pr in
[8, Theorem 5.1], are still in R. Recently A. Perucca [13, Corollary 5], has proven Theorem 5.1 of [8] using her l-adic
support problem result. At the end of this paper we reprove Theorem 5.1 of [8] by arguments presented in the proof
of Theorem 1.1.

Although not explicitly presented in our proofs, this paper essentially applies results on Kummer Theory for abelian
varieties, originally developed by K. Ribet [15], and results of F. Bogomolov [5], G. Faltings [7], J.-P. Serre and
J. Tate [17], A. Weil [18], J. Zarhin [20] and other important results about abelian varieties. The application of these
results comes by referring to [1,2,4,14] where Kummer Theory and the results of [5,7,17,18,20] are key ingredients.

2. Proof of Theorem 1.1

Let L/F be an extension of number fields. Let Sl be the following set of primes w in OL.

Sl := {w: w|l} ∪ {w: w|v for a prime v of bad reduction for A/F }.
Let Gl denote the l-torsion part of an abelian group G. The reduction map,

rw :A(L)l → Aw(kw)l,

is injective for every w /∈ Sl [10] pp. 501–502, [9] Theorem C.1.4 p. 263.
The following lemma is a result of S. Barańczuk which is a refinement of Theorem 3.1 of [2] and Proposition 2.2

of [3]. This is also a result of R. Pink [14, Corollary 4.3]. Recall [13, Proposition 2.2], that a nontorsion point Q ∈
A(F) is independent over R if and only if the subgroup ZQ is Zariski dense in A.
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Lemma 2.1. ([4], Th. 5.1, [14], Cor. 4.3.) Let l be a prime number. Let m1, . . . ,ms ∈ N ∪ {0}. Let L/F be a finite
extension and let Q1, . . . ,Qs ∈ A(L) be independent over R. There is a family of primes w of OL of positive density
such that rw(Qi) has order lmi in Aw(kw)l for all 1 � i � s.

The following corollary follows also from [14], Theorem 4.1:

Corollary 2.2. Let m ∈ N. Let Q1, . . . ,Qs ∈ A(F) be independent over R and let T1, . . . , Ts ∈ A[lm]. Let L :=
F(A[lm]). There is a family of primes w of OL of positive density such that for the prime v of OF below w:

(1) rw(T1), . . . , rw(Ts) ∈ Av(kv) ⊂ Aw(kw),
(2) rw(Ti) = rv(Qi) in Av(kv)l for all 1 � i � s.

Proof. Observe that the points Q1 − T1, . . . ,Qs − Ts are linearly independent over R in A(L). Hence it follows
by Lemma 2.1 that there is a family of primes w of OL of positive density such that rw(Qi − Ti) = 0 in Aw(kw)l .
Since Q1, . . . ,Qs ∈ A(F), it follows that rw(Qi − Ti) = rw(Qi) − rw(Ti) = rv(Qi) − rw(Ti) for the prime v of OF

below w. Hence we get rw(Ti) = rv(Qi) ∈ Av(kv)l for all 1 � i � s. �
Proof of Theorem 1.1. It is enough to prove that (2) implies (1). By Theorem 2.9 [2] there is an a ∈ N and elements
α1, . . . , αr ∈ R such that

aP =
r∑

i=1

αiPi. (1)

Step 1. Assume that αi ∈ Z for all 1 � i � r . We will show (cf. the proof of Theorem 3.12 of [2]) that P ∈ ∑r
i=1 ZPi .

Let lk be the largest power of l that divides a. Lemma 2.1 shows that for any 1 � i � r there are infinitely many primes
v such that rv(P1) = · · · = rv(Pi−1) = rv(Pi+1) = · · · = rv(Pr) = 0 and rv(Pi) has order equal to lk in Av(kv)l . By (1)
we obtain arv(P ) = αirv(Pi). Moreover by assumption (2) of the theorem, rv(P ) = βirv(Pi) for some βi ∈ Z. Hence

(αi−aβi)rv(Pi) = 0

in Av(kv)l . This implies that lk divides αi for all 1 � i � r . So by (1) we obtain:

a

lk
P =

r∑

i=1

αi

lk
Pi + T , (2)

for some T ∈ A(F)[lk]. Again, by Lemma 2.1 there are infinitely many primes v in OF such that rv(Pi) = 0 in Av(kv)l
for all 1 � i � r . In addition rv(P ) ∈ ∑r

i=1 Zrv(Pi) for almost all v. So (2) implies that rv(T ) = 0, for infinitely many
primes v. This contradicts the injectivity of rv , unless T = 0. Hence,

a

lk
P =

r∑

i=1

αi

lk
Pi . (3)

Repeating the above argument for primes dividing a
lk

shows that condition (1) holds.
Step 2. Fix an embedding of F into C. Assume αi /∈ Z for some i. Observe that αi is an endomorphism of the Riemann
lattice L, such that A(C) ∼= Cg/L. To make the notation simple, we will denote again by αi the endomorphism αi ⊗ 1
acting on Tl(A) ∼= L ⊗ Zl . Let P(t) := det(t IdL −αi) ∈ Z[t], be the characteristic polynomial of αi acting on L. Let
K be the splitting field of P(t) over Q. We take l such that it splits in K and l does not divide primes of bad reduction.
Since P(t) has all roots in OK and is also the characteristic polynomial of αi on Tl(A), we see that P(t) has all
roots in Zl by the assumption on l. If P(t) has at least two different roots in OK , we easily find a vector u ∈ Tl(A)

which is not an eigenvector of αi on Tl(A). If P(t) has a single root λ ∈ OK then P(t) = (t − λ)2g and we must
have λ ∈ Z because we are in characteristic 0. Hence P(t) = (t − λ)2g is the characteristic polynomial of αi as an
endomorphism of L. Since αi /∈ Z we find easily u ∈ L such that u is not an eigenvector of αi acting on Tl(A). In
any case there is u ∈ Tl(A) which is not an eigenvector of αi acting on Tl(A). Rescaling if necessary, we can assume
that u is not divisible by l in Tl(A). Hence for m ∈ N and m big enough we can see that the coset u + lmTl(A) is not
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an eigenvector of αi acting on Tl(A)/lmTl(A). Indeed, if αiu ≡ cmu mod lmTl(A) for cm ∈ Z/lm for each m ∈ N,
then cm+1u ≡ cmu mod lmTl(A). Because u is not divisible by l in Tl(A), this implies that cm+1 ≡ cm mod lm for
each m ∈ N. But this contradicts the fact that u is not an eigenvector of αi acting on Tl(A). Consider the natural
isomorphism of Galois and R modules Tl(A)/lmTl(A) ∼= A[lm]. We put T ∈ A[lm] to be the image of the coset
u+ lmTl(A) via this isomorphism. Put L := F(A[lm]). By Corollary 2.2 we choose a prime v below a prime w of OL

such that

(i) rw(T ) ∈ Av(kv)l ,
(ii) rv(Pj ) = 0 for all j 	= i and rv(Pi) = rw(T ) in Av(kv)l .

From (1) and (ii) we get arv(P ) = αirv(Pi) = αirw(T ) in Av(kv)l . Hence for the prime w in OL over v we get in
Aw(kw)l the following equality:

arw(P ) = αirw(Pi) = αirw(T ). (4)

By assumption (2) and (ii) there is d ∈ Z, such that arv(P ) = adrv(Pi) = adrw(T ) in Av(kv)l . Hence, for the prime
w in OL over v, we get in Aw(kw)l the following equality:

arw(P ) = adrw(Pi) = adrw(T ). (5)

Since rw is injective, the equalities (4) and (5) give:

αiT = adT in A
[
lm

]
.

But this contradicts the fact that T is not an eigenvector of αi acting on A[lm]. It proves that αi ∈ Z for all 1 � i � r ,
but this case has already been taken care of in step 1 of our proof. �
Corollary 2.3. Let A be a simple abelian variety. Let P1, . . . ,Pr be elements of A(F) linearly independent over R.
Let P be a nontorsion point of A(F). The following conditions are equivalent:

(1) P ∈ ∑r
i=1 ZPi ,

(2) rv(P ) ∈ ∑r
i=1 Zrv(Pi) for almost all primes v of OF .

Proof. This is an immediate consequence of Theorem 1.1. Indeed, for a nontorsion point P the R-module RP is a
free R-module since D = R ⊗Z Q is a division algebra because A is simple. �
Corollary 2.4. Let A be a simple abelian variety. Let P and Q be nontorsion elements of A(F). The following
conditions are equivalent:

(1) P = mQ for some m ∈ Z,
(2) rv(P ) = mvrv(Q) for some mv ∈ Z for almost all primes v of OF .

Proof. This is an immediate consequence of Corollary 2.6 because RQ is a free R-module since A is simple. �
The following proposition is Theorem 5.1 of [8]. We give a new proof of this theorem using arguments presented

in the proof of Theorem 1.1.

Proposition 2.5. Let A be an abelian variety over F . Let P1, . . . ,Pr be elements of A(F) linearly independent over R.
Let P be a point of A(F) such that RP is a free R module. The following conditions are equivalent:

(1) P ∈ ∑r
i=1 RPi ;

(2) rv(P ) ∈ ∑r
i=1 Rrv(Pi) for almost all primes v of OF .

Proof. Again we need to prove that (2) implies (1). Let us assume (2). By [2], Theorem 2.9 there is an a ∈ N and
elements α1, . . . , αr ∈ R such that equality (1) holds. Let l be a prime number such that lk||a for some k > 0. Put
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L := F(A[lk]) and take arbitrary T ∈ A[lk]. By Corollary 2.2 we can choose a prime v below a prime w of OL such
that

(i) rw(T ) ∈ Av(kv)l ,
(ii) rv(Pj ) = 0 for all j 	= i and rv(Pi) = rw(T ) in Av(kv)l .

From (1) and (ii) we get arv(P ) = αirv(Pi) = αirw(T ) in Av(kv)l . Hence we have the following equality in Aw(kw)l :

arw(P ) = αirw(Pi) = αirw(T ). (6)

By assumption (2) and (ii) there is δ ∈ R, such that arv(P ) = aδrv(Pi) = aδrw(T ) = 0 in Av(kv)l . Hence we have
the following equality in Aw(kw)l :

arw(P ) = aδrw(Pi) = aδrw(T ) = 0. (7)

By injectivity of rw , the equalities (6) and (7) imply:

αiT = 0 in A
[
lk

]
.

This shows that αi maps to zero in EndGF
(A[lk]). It is easy to observe that the natural map,

R/lk R → EndGF

(
A

[
lk

])
,

is an embedding for every prime number l and every k ∈ N. Recall [20, Corollary 5.4.5], that this map is an iso-
morphism for l 
 0 and all k ∈ N cf. the proof of Lemma 2.2 of [2]. It follows that αi ∈ lk R for all 1 � i � r .
So

a

lk
P =

r∑

i=1

βiPi + T ′, (8)

where T ′ ∈ A(F)[lk] and βi ∈ R for all 1 � i � r . By Lemma 2.1 there are infinitely many primes v in OF such
that rv(Pi) = 0 in Av(kv)l for all 1 � i � r . In addition rv(P ) ∈ ∑r

i=1 Rrv(Pi) for almost all v. So (8) implies that
rv(T

′) = 0, for infinitely many primes v. Hence T ′ = 0 by the injectivity of rv [10] pp. 501–502, [9] Theorem C.1.4
p. 263. Hence

a

lk
P =

r∑

i=1

βiPi. (9)

Repeating the above argument for primes dividing a
lk

finishes the proof of the proposition. �
3. Remark on Mordell–Weil R systems

Let R be a ring with identity. In the paper [1] the Mordell–Weil R systems have been defined. In [2] we inves-
tigated Mordell–Weil R systems satisfying certain natural axioms A1 − A3 and B1 − B4. We also assumed that R
was a free Z-module. Let us consider Mordell–Weil R systems which are associated to families of l-adic representa-
tions ρl :GF → GL(Tl) such that ρl(GF ) contains an open subgroup of homotheties. Since Theorem 2.9 of [2] and
Theorem 5.1 of [4] were proven for Mordell–Weil R systems, then Proposition 2.8 and its proof generalize for the
Mordell–Weil R systems. This shows that Theorem 2.9 of [2], which is stated for Mordell–Weil R systems, holds
with a = 1. Let us also assume that there is a free Z-module L such that R ⊂ EndZ(L) and for each l there is an
isomorphism L ⊗ Zl

∼= Tl such that the action of R on Tl comes from its action on L. Abelian varieties are principal
examples of Mordell–Weil R systems satisfying all the requirements stated above with R = EndF (A). Then Theo-
rem 1.1 generalizes also for Mordell–Weil R systems satisfying the above assumptions because we can apply again
Theorem 2.9 of [2] and Theorem 5.1 of [4].
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