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Abstract

In this Note, the equations of nonlinear three-dimensional elasticity corresponding to the pure displacement problem are recast
either as a boundary value problem, or as a minimization problem, where the unknown is in both cases the Cauchy–Green strain
tensor, instead of the deformation as is customary. We then show that either problem possesses a solution if the applied forces
are sufficiently small and the stored energy function satisfies specific hypotheses. The second problem provides an example of a
minimization problem for a non-coercive functional over a Banach manifold. To cite this article: P.G. Ciarlet, C. Mardare, C. R.
Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le problème en déplacement pur en élasticité non linéaire tri-dimensionnelle : Formulation intrinsèque et théorèmes
d’existence. Dans cette Note, les équations de l’élasticité non linéaire tri-dimensionnelle correspondant au problème en dépla-
cement pur sont ré-écrites, soit comme un problème aux limites, soit comme un problème de minimisation, l’inconnue étant dans
les deux cas le tenseur des déformations de Cauchy–Green, au lieu de la déformation comme il est usuel. On montre ensuite que
l’un et l’autre problème ont au moins une solution si les forces sont suffisamment petites et si la densité d’énergie satisfait certaines
hypothèses naturelles. Le second problème constitue un exemple de problème de minimisation d’une fonctionnelle non coercive
sur une variété de Banach. Pour citer cet article : P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On trouvera les démonstrations complètes des résultats annoncés ici dans [10]. On renvoie par ailleurs à la version
anglaise pour les numéros de formules et les références non citées ici. Dans ce qui suit, Ω désigne un ouvert borné
et simplement connexe de R

3, de frontiere ∂Ω suffisamment régulière. Le problème en déplacement pur de l’élasti-
cité tri-dimensionnelle se formule classiquement sous la forme d’un problème aux limites, comprenant les équations
d’équilibre et la condition aux limites (1), et la loi de comportement (3), exprimée en fonction du tenseur des déforma-

E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).
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tions de Cauchy–Green C(x) défini en tout point x de la configuration de référence Ω par la formule (2). L’inconnue
principale est alors le champ de déformations ϕ :Ω → R

3.
Dans cette Note, on se propose de reformuler le problème (1)–(3), ainsi que le problème de minimisation associé

lorsque le matériau considéré est hyperélastique, en prenant comme inconnue principale le champ de tenseurs C :Ω →
S

3
> ; on obtient ainsi une formulation intrinsèque de chacun de ces deux problèmes (l’idée de telles formulations

remonte à Antman [2]). A cette fin, on doit commencer par définir les champs de tenseurs admissibles. Comme le
montre la relation (11), ces champs appartiennent à l’espace de Sobolev W 2,s(Ω;S

3
>), où s > 3, ils annulent (au sens

des distributions) le tenseur de Riemann de composantes R
p
·ijk(C), et enfin ils vérifient des relations appropriées le

long de la surface S = ∂Ω , qui expriment que les formes fondamentales des surfaces id(∂Ω) et ϕ(∂Ω) coincident
(c’est ainsi qu’on prend en compte la condition aux limites ϕ = id sur ∂Ω ; un usage essentiel est fait ici de l’extension
au sens des distributions du théorème fondamental de la théorie des surfaces due à S. Mardare [14]). En procédant
comme dans C. Mardare [12], on montre ensuite que l’ensemble T(Ω) formé par ces champs de tenseurs admissibles
est une variété de Banach (Théorème 2), et que la formulation intrinsèque du problème en déplacement pur (1)–(3) est
constituée par les relations (11)–(12), l’application G étant l’inverse de l’application F définie en (8). On montre enfin
(Théorème 4) que cette formulation intrinsèque a une solution si les forces sont suffisamment petites dans l’espace
W 1,s(Ω;R

3). La démonstration utilise en particulier le théorème des fonctions implicites dans une variété de Banach
de Abraham, Marsden et Ratiu [1].

On suppose ensuite que le matériau est hyperélastique, avec une densite d’énergie de la forme (15), proposée par
Ciarlet et Geymonat [8]. On établit alors que la formulation intrinsèque du problème de minimisation associé, qui
consiste à minimiser la fonctionnelle I définie en (18) sur la variété T(Ω) de (11), a lui aussi une solution si les forces
sont à nouveau suffisamment petites dans l’espace W 1,s(Ω;R

3) (Théorème 5). La démonstration repose entre autres
sur le théorème fondamental d’existence de Ball [3] et sur la comparaison due à Zhang [16] entre la solution fournie
par celui-ci et celle fournie par le théorème des fonctions implicites. Comme il sera montré dans l’article developpé
[10], le Théorème 5 s’étend aux densités d’énergie plus générales considerées par Ball [3] et Ball et Murat [4].

Il est à noter que le Théorème 5 fournit un exemple de problème de minimisation d’une fonctionnelle non coercive
sur une variété de Banach.

1. The classical formulation of the pure displacement problem of nonlinear elasticity

All matrices, function spaces, etc., considered in this Note are real.
The notations M

3, M
3+, S

3, and S
3
> respectively designate the space of all square matrices of order three, the set

of all matrices F ∈ M
3 with detF > 0, the space of all symmetric matrices of order three, and the set of all positive

definite symmetric matrices of order three.
Consider an elastic body, which in the absence of applied forces occupies the closure of a bounded and connected

open subset Ω of R
3, called the reference configuration of the body. A deformation of the elastic body is a smooth

enough mapping ϕ :Ω → R
3 that is orientation preserving (i.e., det∇ϕ(x) > 0 for all x ∈ Ω) and injective on the

open set Ω (i.e., no interpenetration of matter occurs). We consider here the pure displacement problem, i.e., we
assume that every admissible deformation ϕ satisfies ϕ(x) = x for all x ∈ ∂Ω , or in short ϕ = id on ∂Ω .

We assume that the body is subjected to applied body forces of dead load type, given by their densities f :Ω → R
3

per unit volume. Thanks to the stress principle of Euler and Cauchy and to Cauchy’s theorem, there exists a (second
Piola–Kirchhoff) stress tensor field Σ :Ω → S

3 that satisfies the following equations of equilibrium in the reference
configuration:

−div
(∇ϕ(x)Σ(x)

) = f (x), x ∈ Ω, and ϕ(x) = x, x ∈ ∂Ω. (1)

The above equations of equilibrium must be supplemented by the constitutive equation of the elastic material,
relating the stress tensor field Σ and the deformation ϕ by means of a function Σ̂ :Ω ×M

3+ → S
3, called the response

function of the material, as Σ(x) = Σ̂(x,∇ϕ(x)) for all x ∈ Ω .
Because of the principle of material frame-indifference, the stress tensor Σ(x) at any point x of the reference

configuration Ω depends on the deformation gradient ∇ϕ(x) only via its associated Cauchy–Green tensor

C(x) := (∇ϕ(x)
)T ∇ϕ(x). (2)
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In other words, there exists a response function Σ̃ :Ω × S
3
> → S

3 such that

Σ(x) = Σ̃
(
x,C(x)

)
, x ∈ Ω. (3)

The system formed by Eqs. (1)–(3) constitute the equations of nonlinear three-dimensional elasticity for the pure
displacement problem (for more details about the derivation of these equations, see, e.g., [5]).

In the classical approach, the tensor Σ(x) appearing in the equations of equilibrium (1) is replaced with its ex-
pression (3), so that the deformation ϕ :Ω → R

3 becomes the primary unknown.

2. The manifold of admissible Cauchy–Green tensor fields; intrinsic formulation of the pure displacement
problem

Our aim is to recast the pure displacement problem (1)–(3) (and later on, its formulation as a minimization problem;
cf. Section 4) in terms of the matrix field C :Ω → S

3
> as the primary unknown, instead of the deformation ϕ as in the

classical approach; this is the basis of the so-called intrinsic approach, first suggested, albeit briefly, by Antman [2].
Complete proofs and various generalizations will be found in [10]. See also [11] for the “linearized version” of

the results announced here, which serves as a useful complement to [7] where only the pure traction problem was
considered.

To begin with, we need to characterize those matrix fields that are Cauchy–Green tensor fields induced by those
deformations that are admissible for the pure displacement problem in nonlinear elasticity.

In all that follows, we assume that Ω is a bounded and simply-connected open subset of R
3 with a sufficiently

smooth boundary. Latin indices and exponents take their values in the set {1,2,3}. Recall that the Sobolev space
Wm,s(Ω) is an algebra if ms > 3 since Ω is a three-dimensional domain.

The set of admissible deformations that is best suited for our subsequent purposes turns out to be defined by

D(Ω) := {
ϕ ∈ W 3,s

(
Ω;R

3); det∇ϕ(x) > 0 for all x ∈ Ω, ϕ(x) = x, x ∈ ∂Ω
}
, (4)

for some s > 3/2. With any deformation ϕ ∈ D(Ω), we associate the Christoffel symbols Γ k
ij and the mixed compo-

nents R
p
·ijk of the Riemann tensor field by letting

gij := (C)ij ,
(
gk�

) := (gij )
−1, Γ k

ij := 1

2
gk�(∂igj� + ∂jg�i − ∂�gij ), (5)

R
p
·ijk(C) := ∂jΓ

p
ik − ∂kΓ

p
ij + Γ �

ikΓ
p
j� − Γ �

ijΓ
p
k�, (6)

where C := ∇ϕT ∇ϕ. The corresponding set of admissible Cauchy–Green tensor fields is then naturally defined as
the image

T(Ω) := F
(
D(Ω)

)
(7)

through the mapping

F :ϕ ∈ W 3,s
(
Ω;R

3) �→ F (ϕ) := ∇ϕT ∇ϕ ∈ W 2,s
(
Ω;S

3). (8)

It is clear that each matrix field C ∈ T(Ω) is continuous over Ω (in the sense that the equivalence class C contains
one and only one matrix field that is continuous over Ω) and that the matrix C(x) is positive definite at all x ∈ Ω . In
addition, it is well known that the components gij of the matrix field C necessarily satisfies the equations

R
p
·ijk(C) = 0 in D′(Ω).

It remains to recast the boundary condition ϕ = id on ∂Ω in terms of the matrix field C.
The fundamental theorem of surface theory asserts that a surface is uniquely determined up to a rigid motion in

R
3 by its two fundamental forms. The condition ϕ = id on ∂Ω is thus equivalent, up to a rigid motion in R

3, to
the condition that the two fundamental forms defined by the restriction ϕ|∂Ω to ∂Ω of the immersion ϕ (note that
ϕ ∈ D(Ω) implies that ϕ ∈ C 1(Ω;R

3)) coincide with the two fundamental forms defined by the immersion id|∂Ω .
Recall that the first fundamental form induced by the immersion ϕ at a point x ∈ S of the surface S := ∂Ω is the
restriction to the space TxS × TxS of the bilinear form

Ax(C) : (a,b) ∈ R
3 × R

3 �→ aT C(x)b ∈ R,
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where TxS denotes the tangent space of S at x ∈ S, and that the second fundamental form induced by the immersion
ϕ at a point x ∈ S of the surface S := ∂Ω is the restriction to the space TxS × TxS of the bilinear form

Bx(C) : (a,b) ∈ R
3 × R

3 �→ −1

2
aT (LnC)(x)b ∈ R,

where L denotes the Lie derivative and n is a C 1-extension in a neighborhood of S of a vector field that is unit and
normal to S with respect to the metric induced by the field C (i.e., aT C(x)n = 0 for all a ∈ TxS and nT C(x)n = 1).
To fix the sign of the second fundamental form, we choose n pointing inwardly to Ω . Thus the boundary condition
ϕ = id on ∂Ω is equivalent, up to a rigid motion in R

3, to the relations

Ax(C) = Ax(I ) and Bx(C) = Bx(I ) on TxS × TxS for all x ∈ S. (9)

We can then prove that the above necessary conditions are in fact sufficient. To this end, we use the extensions in
the sense of distributions of the fundamental theorems of Riemannian geometry and of surface theory, both due to
S. Mardare (see [13–15]; this is where the assumption s > 3/2 is needed, so as to guarantee that the trace on S of a
function in W 1,s(Ω) is in Lσ (S) with σ > 2). Naturally, the assumption that Ω is simply connected is also crucially
needed here. We then have:

Theorem 1. Let s > 3/2. A matrix field C ∈ W 2,s(Ω;S
3) belongs to the image

T(Ω) := F
(
D(Ω)

)
(10)

if and only if C(x) ∈ S
3
> for all x ∈ Ω , R

p
·ijk(C) = 0 in D′(Ω), and relations (9) are satisfied.

The next theorem shows that the above set T(Ω) of admissible Cauchy–Green tensor fields for the pure displace-
ment problem of nonlinear elasticity, as defined in (10), is a Banach manifold:

Theorem 2. Let s > 3/2, and let the set D(Ω) and the mapping F be defined as in (4) and (8). Then the set
T(Ω) = F (D(Ω)) is a Banach manifold of class C∞ in the Banach space W 2,s(Ω;S

3), and the mapping F is a
C∞-diffeomorphism from D(Ω) onto T(Ω).

Sketch of proof. It suffices to prove that the set D(Ω) is itself a C∞-manifold in the Banach space W 3,s(Ω;R
3),

and that the mapping F is an embedding of class C∞. To this end, we essentially proceed as in C. Mardare [12], by
successively proving the following steps:

(i) The set D(Ω) is a manifold of class C∞ in the Banach space W 3,s(Ω;R
3) and the tangent space to D(Ω) at

any ϕ ∈ D(Ω) is the space W 3,s(Ω;R
3) ∩ W

1,s
0 (Ω;R

3). This is so because D(Ω) is open in the closed affine space

{id + W 3,s(Ω;R
3) ∩ W

1,s
0 (Ω;R

3)}.
(ii) The mapping F is a homeomorphism from D(Ω) onto its image. To prove this, we need to prove that F

is injective, continuous, and that its inverse G := F −1 : F (D(Ω)) → W 3,s(Ω;R
3) is also continuous (proving the

continuity of G relies in particular on an argument similar to that used in Ciarlet and Mardare [9], although different
function spaces were used there).

(iii) At every ϕ ∈ D(Ω), the tangent mapping Tϕ F :W 3,s(Ω;R
3) ∩ W

1,s
0 (Ω;R

3) → W 2,s(Ω;S
3) is injec-

tive. Since the mapping F is bilinear, it is easy to prove that its tangent map at ϕ is defined by (Tϕ F )(χ) =
∇ϕT ∇χ + ∇χT ∇ϕ for all χ ∈ W 3,s(Ω;R

3). Since ϕ = id on ∂Ω and det∇ϕ(x) > 0 for all x ∈ Ω , the mapping ϕ
is a C 1-diffeomorphism from Ω onto Ω . It then suffices to use the three-dimensional Korn inequality in curvilinear
coordinates (cf. Ciarlet [6]; here the curvilinear coordinates are those defined by the immersion ϕ).

(iv) The tangent mapping Tϕ F has a closed split range in the space W 2,s(Ω;S
3). To prove this, we need to prove

that the range A of Tϕ F is a closed subset of the space W 2,s(Ω;S
3) and that there exists a closed subspace B of the

same space such that W 2,s(Ω;S
3) = A ⊕ B; cf. Abraham, Marsden and Ratiu [1, Definition 2.1.14].

(v) Conclusion. The tangent mapping Tϕ F being injective and having a closed split range at every ϕ ∈ D(Ω), the
mapping F is an immersion, according to [1, Definition 3.5.6]. Since it is also a homeomorphism onto its image, F is
in fact an embedding; cf. [1, Definition 3.5.9]. Hence its image T(Ω) is a manifold in the Banach space W 2,s(Ω;S

3).
This manifold is of class C∞ since F is of class C∞. That the mapping F is a diffeomorphism of class C∞ is a
consequence of the inverse function theorem of [1, Theorem 3.5.1]. �
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Thanks to Theorems 1 and 2, we can now recast the pure displacement problem of nonlinear elasticity of Section 1
with C as its primary unknown in the form of relations (11)–(12) below, which constitute the intrinsic formulation of
the pure displacement problem.

Theorem 3. Let s > 3/2, and let G := F −1 : T(Ω) → D(Ω) (cf. Theorem 2). Then a deformation ϕ ∈ D(Ω) is a
solution to the pure displacement problem (1)–(3) if and only if its associated Cauchy–Green tensor field C = ∇ϕT ∇ϕ
satisfies the following relations

C ∈ T(Ω) = {
C ∈ W 2,s

(
Ω;S

3
>

); R
p
·ijk(C) = 0 in D′(Ω), Ax(C) = Ax(I )

and Bx(C) = Bx(I ) on TxS × TxS for all x ∈ S
}
, (11)

−div
{∇G(C)Σ̃(·,C)

} = f in D′(Ω;R
3). (12)

3. Existence of solutions to the intrinsic formulation of the pure displacement problem

From now on, we assume that the elastic material is homogeneous and isotropic, and that the reference configuration
Ω is a natural state, so that the behavior of the material “for small strains” is governed by its two Lamé constants λ � 0
and μ > 0 (cf., e.g., Ciarlet [5, Chapter 3]). We further assume that the material constituting the body is hyperelastic,
with a stored energy function of the form proposed by Ciarlet and Geymonat [8], viz.,

Ŵ (x,F ) := a|F |2 + b|CofF |2 + c(detF )2 − d log(detF ) − (3a + 3b + c) for all (x,F ) ∈ Ω × M
3+, (13)

where |A| designates the Frobenius norm of a matrix A ∈ M
3, and the constants a > 0, b > 0, c > 0 and d > 0 are so

chosen that

Ŵ (x,F ) = λ

2
(trE)2 + μ tr

(
E2) + o

(|E|2) with E := 1

2

(
F T F − I

)
for all (x,F ) ∈ Ω × M

3+. (14)

Note that the function Ŵ is independent of x ∈ Ω and depends on F ∈ M
3+ only via C := F T F . Indeed, a simple

computation shows that Ŵ (x,F ) = W̃ (C) for all (x,F ) ∈ Ω × M
3+, where

W̃ (C) := a trC + b tr CofC + c detC − d

2
log detC − (3a + 3b + c) for all C ∈ S

3
>. (15)

Note that the stored energy of (13) is chosen here essentially for the sake of brevity; otherwise more general hypere-
lastic materials, such as those considered in Ball [3] and Ball and Murat [4], can be as well considered; cf. [10].

We now show that the intrinsic formulation of the pure displacement problem has a solution provided that the body
force density is “small enough” in ad hoc norm.

Theorem 4. Let s > 3/2, and let the response function Σ̃ :Ω × S
3
> → S

3 appearing in the constitutive equation (3)
be given by

Σ̃(x,C) = 1

2

∂W̃

∂C
(C) for all (x,C) ∈ Ω × S

3
>, (16)

where the function W̃ : S3
> → R is given by (15).

Then there exist two constants ε > 0 and δ > 0 such that, for each f ∈ W 1,s(Ω;R
3) with ‖f ‖W 1,s (Ω;R3) < ε,

there exists a unique solution C ∈ T(Ω) to the intrinsic formulation of the pure displacement problem (11)–(12) that
satisfies ‖C − I‖W 2,s (Ω;S3) < δ.

Idea of the proof. The idea is to apply the implicit function theorem on Banach manifolds (cf. Abraham, Marsden
and Ratiu [1, Theorem 3.5.1]) to the mapping

H :C ∈ T(Ω) �→ H(C) := −div
{∇G(C)Σ̃(·,C)

} ∈ W 1,s
(
Ω;R

3),
in a neighborhood of I ∈ T(Ω). To this end, we need to prove that H is at least of class C 1 and that its tangent mapping
at I , which is given by

TI H :D ∈ TI

(
T(Ω)

) = (Tid F )
(
W 3,s

(
Ω;R

3) ∩ W
1,s
0

(
Ω;R

3)) �→ −div

{
∂Σ̃

(·, I )D

}
∈ W 1,s

(
Ω;R

3),

∂C
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is an isomorphism. To see this, we use that H = K ◦ G , where the mapping K is defined by

K :ϕ ∈ D(Ω) �→ K(ϕ) := −div
{∇ϕΣ̃

(·,∇ϕT ∇ϕ
)} ∈ W 1,s

(
Ω;R

3).
As shown in Ciarlet [5, Theorem 4.2-2], it follows from (14) that

Σ̃(x,C) = λ(trE)I + 2μE + o(E) for all E := 1

2
(C − I ), C ∈ S

3
>,

which in turn implies that
∫
Ω

∂Σ̃

∂C
(x, I )e(x) : e(x)dx =

∫
Ω

{
λ

2

(
tr e(x)

)2 + μ
∣∣e(x)

∣∣2
}

dx � μ
(‖e‖L2(Ω;S3)

)2

for all e ∈ L2(Ω;S
3), thus a fortiori for all e ∈ W 2,s(Ω;S

3). This implies that the derivative of the mapping K at
ϕ = id is an isomorphism and thus that the implicit function theorem can be applied. �
4. Existence of solutions to the intrinsic formulation of the associated minimization problem

For a hyperelastic material, such as the one that is considered here, Eqs. (1)–(3) formally constitute the Euler
equations associated with the critical points of the functional J defined by

J (ϕ) :=
∫
Ω

W̃
(∇ϕ(x)T ∇ϕ(x)

)
dx −

∫
Ω

f (x) · ϕ(x)dx, (17)

over an appropriate set of admissible deformations ϕ. As usual, we are interested in those critical points that minimize
the functional J defined in (17).

The intrinsic formulation of this minimization problem again consists in considering that the tensor field C =
∇ϕT ∇ϕ is the primary unknown, instead of the deformation ϕ. We then show that this new minimization problem,
i.e., which consists in minimizing the non-coercive functional I of (18) over the Banach manifold T(Ω) of (11), has
a solution.

Theorem 5. Let s > 3/2, and let the response function Σ̃ :Ω × S
3
> → S

3 be given by (16), where the function
W̃ : S3

> → R is given by (15).
Then there exist two constants ε > 0 and δ > 0 with the following property: Given any f ∈ W 1,s(Ω;R

3) with
‖f ‖W 1,s (Ω;R3) < ε, there exists a unique matrix field C0 ∈ T(Ω) with ‖C0 − I‖W 2,s (Ω;S3) < δ that minimizes the
functional I defined by (recall that G = F −1; cf. Theorem 3)

I(C) :=
∫
Ω

W̃(C)dx −
∫
Ω

f · G(C)dx for all C ∈ T(Ω), (18)

over the Banach manifold T(Ω) defined in (11).

Sketch of proof. Since all the assumptions of Theorem 4 are satisfied, there exist two constants ε0 > 0 and δ0 > 0
such that, if ‖f ‖W 1,s (Ω;R3) < ε0, there exists a unique solution C0 ∈ T(Ω) to problem (11)–(12) that satisfies
‖C0 − I‖W 2,s (Ω;S3) < δ0. Let

D0(Ω) := {
ϕ ∈ H 1(Ω;R

3); Cof∇ϕ ∈ L2(Ω;M
3),det∇ϕ ∈ L2(Ω),det∇ϕ > 0 a.e. in Ω, ϕ = id on ∂Ω

}
.

On the one hand, since the function Ŵ is polyconvex and satisfies all the assumptions of the fundamental existence
theorem of Ball [3], there exists a vector field ϕ0 ∈ D0(Ω) that minimizes the functional J defined by (17) over the
set D0(Ω). On the other hand, since the response function Σ̂ :Ω × M

3+ �→ S
3 defined by

Σ̂(x,F ) := F−1 ∂Ŵ
(x,F ) for all (x,F ) ∈ Ω × M

3+,

∂F
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satisfies the assumptions of the implicit function theorem as revisited by Zhang [16, Theorem 2.6], there exist two
constants ε1 > 0 and δ1 > 0 such that, if ‖f ‖W 1,s (Ω;R3) < ε1, the boundary value problem

−div
{∇ϕ Σ̃(·,∇ϕ)

} = f in D′(Ω;R
3) and ϕ = id on ∂Ω,

has a unique solution ϕ1 ∈ W 3,s(Ω;R
3) satisfying ‖ϕ1 − id‖W 3,s (Ω;R3) < δ1.

Thanks to [16, Theorem 3.4], there exists 0 < ε � min(ε0, ε1) such that ϕ0 = ϕ1 for all f ∈ W 1,s(Ω;R
3) satisfying

‖f ‖W 1,s (Ω;R3) < ε. Thus the vector field ϕ0 satisfies relations (1), from which it follows that the matrix field ∇ϕT
0 ∇ϕ0

is a solution to problem (11)–(12). In addition, ‖∇ϕT
0 ∇ϕ0 − I‖W 2,s (Ω;S3) < δ0 if ε is chosen sufficiently small. Then

the uniqueness of the solution to problem (11)–(12) shows that ∇ϕT
0 ∇ϕ0 = C0.

Given any matrix field C ∈ T(Ω), there exists, thanks to Theorem 1, a vector field ϕ ∈ D(Ω) such that C =
∇ϕT ∇ϕ. Since then ϕ ∈ D0(Ω), we have J (ϕ0) � J (ϕ). Therefore,

I(C0) = I
(∇ϕT

0 ∇ϕ0
) = J (ϕ0) � J (ϕ) = I

(∇ϕT ∇ϕ
) = I(C).

This shows that the tensor field C0 is a minimizer of the functional I of (18) over the set T(Ω). �
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