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Abstract

We consider the bistable equation vt −�v = f (v, x), f (v, x) = a(x)v(1−v)(v −α(x)) with homogeneous Neumann boundary
conditions in a bounded domain Ω ⊂ R

3 with regular boundary. For this equation, we prove Lipschitz stability for the inverse
problem of recovering parameters a and α from measurements of v in (0, T ) × ω, where ω is an arbitrary nonempty open subset
of Ω and measurements of v(t0) in the whole domain Ω at some positive time t0 such that 0 < t0 < T . The result is based in some
suitable global Carleman estimate for the nonlinear problem. To cite this article: M. Boulakia et al., C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Quelques résultats de stabilité inverse à partir d’inégalités de Carleman pour l’équation bistable. Dans un domaine
Ω ⊂ R

3 borné de frontière régulière, nous considérons l’équation bistable vt − �v = f (v, x), f (v, x) = a(x)v(1 − v)(v − α(x))

complétée par des conditions de Neumann homogène au bord. Pour cette équation, nous prouvons un résultat de stabilité lipschit-
zienne pour le problème inverse qui consiste à identifier les paramètres a et α à partir de mesures de v sur (0, T ) × ω, où ω ⊂ Ω

est un ouvert non vide quelconque et des mesures de v(t0) dans tout le domaine Ω avec t0 tel que 0 < t0 < T . Le résultat est basé
sur une inegalité de Carleman globale pour le problème non linéaire. Pour citer cet article : M. Boulakia et al., C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω ⊂ R
3 be a bounded connected open set with regular boundary ∂Ω (C2+ε , ε > 0). For T > 0, we define

Q = (0, T ) × Ω and Σ = (0, T ) × ∂Ω . We are interested in the identification of the nonlinear term in the bistable
equation:
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{
vt − �v = f (v, x) in Q,

∇v · n = 0 on Σ, v(0) = v0 in Ω,
(1)

where f (v, x) = a(x)v(1 − v)(v − α(x)), from internal measurements. More precisely, we are interested in the iden-
tification of the parameters a and α that are supposed to satisfy

a ∈ W 1,∞(Ω), ∃a0, a1 ∈ R such that 0 < a0 � a(x), a.e. x ∈ Ω and ‖a‖W 1,∞(Ω) � a1, (2)

α ∈ L∞(Ω), ∃α0, α1 ∈ R such that 0 < α0 � α(x) � α1 < 1, a.e. x ∈ Ω. (3)

This model can be seen as a simple model for the propagation of a normalized voltage u in an insulated heart [7] so
in the following we suppose that u0 ∈ (0,1). For a list of other related inverse problems of this kind see [3] and the
references therein.

2. Main results

Theorem 2.1. Let T > 0 and let us consider a nonempty open set ω included in Ω .

(i) We suppose that a satisfy (2) and α satisfy (3). Let v be the solution of (1) with initial condition v0 ∈ L2(Ω)

and let v be another solution of the same system with initial condition v0 ∈ H 2(Ω), then for all T ′ ∈ (0, T ) there
exists C > 0 depending on v such that∥∥v(T ′) − v(T ′)

∥∥
L2(Ω)

� C
(‖v − v‖L2(0,T ;L2(ω)) + ‖v − v‖2

L4(0,T ;L4(ω))

)
.

(ii) Let v0 ∈ H 2(Ω) and v0 ∈ H 4(Ω), a and a satisfy (2) and α and α satisfy (3). We denote by (p,p) = (a, a) or
(α,α), and by v = v(v0,p) and v = v(v0,p) the corresponding solutions of (1). Let us assume that∣∣∣∣∂f∂p

(
v(x, t0)

)∣∣∣∣ � r0 > 0 for some t0 ∈ (0, T ) and for all x ∈ Ω. (4)

Then there exists C > 0 such that ‖p − p‖L2(Ω) � CNT,ω(v − v), where NT,ω(u) = ‖u‖H 1(0,T ;L2(ω)) +
‖u‖2

L4(0,T ;L4(ω))
+ ‖u(t0)‖H 2(Ω) + ‖u(t0)‖3

L6(Ω)
.

Sketch of the proof of Theorem 2.1. Introducing u = v − v and using the exact expansion

f (v, x) − f (v, x) = −a(x)u3 + g(v,u, x), g(v,u, x) = f ′(v, x)u + f ′′(v, x)

2
u2,

the stability results (i) and (ii) can be reduced to the study of a Carleman inequality for the problem{
ut − �u + au3 = G in Q,

∇u · n = 0 on Σ, u(0) = u0 in Ω,
(5)

where G = g(v,u, x) + q(x)R(t, x) a.e. (t, x) ∈ Q. In case (i) q = 0, and in case (ii) q = p − p and R = ∂f
∂p

(v) is the
derivative of f with respect to the corresponding parameter evaluated at the reference trajectory v, i.e.

R = v(1 − v)
(
v − α(x)

)
if p = a(x).

(
resp. R = −a(x)v(1 − v) if p = α(x).

)
(6)

The estimate in the case (i) can be derived directly by applying the estimates on u and ut given by the Carleman
inequality in Theorem 3.1.

In order to obtain estimate (ii), we follow the Bukhgeim–Klibanov approach [1]. We first consider w = ut and we
write the equation satisfied by w as a heat equation wt −�w = h in Q where h = Gt −3au2w. We supose to simplify
that 0 < t0 � T/2 but the result still holds if 0 < t0 < T . Let us denote T0 = 2t0 � T and Q0 = (0, T0) × Ω . We apply
the usual Carleman estimate for the heat equation on (0, T0) and we obtain, for s large enough∫

ρ(t0)
2
∣∣w(t0)

∣∣2 dx � Cs2
∫ ∫

ρ2|w|2 dx dt + C

s

∫ ∫
ρ2|h|2 dx dt,
Ω (0,T0)×ω Q0
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where the weight ρ is precisely defined in Section 3 by (8) with T replaced by T0. Using (5), we have w(t0) =
G(t0) + �u(t0) − au3(t0). Thus, according to the definition of G, Proposition 2.2 and thanks to hypothesis (4) on
R(t0), we deduce that, for s large enough,∫

Ω

ρ(t0)
2|q|2 dx � Cs2NT0,ω(u)2 + C

s

∫ ∫
Q0

ρ2|h|2 dx dt. (7)

By definition of h, thanks to Proposition 2.2 which asserts that v ∈ L∞(Q) and v ∈ W 1,∞(0, T ;L∞(Ω)), the last
term is estimated by

C

s

∫ ∫
Q0

ρ2|h|2 dx dt � C

s

∫ ∫
Q0

ρ2|w|2 dx dt + C

s

∫ ∫
Q0

ρ2(|u|2 + |u|4)dx dt + C

s

∫ ∫
Q0

ρ2|q|2 dx dt.

For the first term in the right-hand side, we apply a second time the Carleman inequality for the heat equation (we
see that it is capital to have C/s in factor) and the second term is estimated thanks to the specific Carleman inequality
of Theorem 3.1 on (0, T0). Finally, once the obtained inequality is injected in (7), the last term can be absorbed for
s large enough by the left-hand side of (7) since ρ � ρ(t0) on (0, T0) thanks to the choice of T0 = 2t0. This ends the
proof of (ii).

Our proof relies on the following standard regularity results of the solution of problem (5). Notice that the cubic
nonlinear term does not affect the standard regularity for the heat equation.

Proposition 2.2. We suppose that a and α satisfy (2) and (3). If v0 belongs to L2(Ω), system (1) admits a solution
v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H 1(Ω)) ∩ L4(0, T ;L4(Ω)).

If v0 ∈ H 2(Ω), system (1) admits a solution v in W 1,∞(0, T ;L2(Ω)) ∩ H 1(0, T ;H 1(Ω)) ∩ L∞(0, T ;H 2(Ω))

and the norm of v in this space is bounded by a constant depending on the norm of v0 in H 2(Ω), a0 and a1.
Moreover, if v0 ∈ H 4(Ω), v belongs to W 2,∞(0, T ;L2(Ω)) ∩ H 2(0, T ;H 1(Ω)) ∩ W 1,∞(0, T ;H 2(Ω)) and the

norm of v in this space is bounded by a constant depending on the norm of v0 in H 4(Ω), a0 and a1.

The following proposition shows that there exist trajectories v satisfying hypothesis (4):

Proposition 2.3. If v0 ∈ H 4(Ω) is such that v0 ∈ (0,1) or (0, α0) or (α1,1) then v(x, t) solution of (1) lies strictly on
the same interval for (x, t) ∈ Ω × [0, T ].

We use the strong comparison principle (see [6] and [2]): let Lu = ut − �u and u, u super and subsolutions such
that Lu � f (u) and Lu � f (u) in Q. If u(0) < u(0) in Ω and ∂u

∂n
� ∂u

∂n
on Σ , then either u ≡ u or u < u in Q. This

comparison result is obtained by applying the strong maximum principle to u = u − u satisfying Lu − cu � 0 with
a bounded c = (f (u) − f (u))/(u − u). Now, for instance, if v0 ∈ (0, α0) the principle is applied twice with u = 0,
u = v and u = v, u = α0 to obtain that 0 < v(t, x) < α0 for all (t, x) ∈ Q. To see that this is also true on Σ , we use the
Hopf Lemma: if v(t0, x0) = 0 for some t0 ∈ (0, T ) and x0 ∈ ∂Ω , then v attains its minimum on the boundary and in
this case either v = 0 in [0, t0]×Ω or ∂v

∂n
(t0, x0) > 0. This leads to a contradiction with v(0) = v0 > 0 in Ω or ∂v

∂n
= 0

on Σ respectively. In the same way, we obtain a contradiction if v(t0, x0) = α0 for some t0 ∈ (0, T ) and x0 ∈ ∂Ω .

3. Global Carleman inequality for problem (5)

As for the linear heat equation [5], we define a function ψ in Ω such that ψ ∈ C2(Ω), ψ > 0 in Ω , ψ = 0 on ∂Ω ,
|∇ψ | > 0 in Ω \ ω′, where ω′ � ω is a nonempty open set. The existence of such function has been proved in [5]. We
define, for all λ > 0 and s > 0 the following weights on Q

ϕ(ψ) = e2λ‖ψ‖∞ − eλψ(x)

, η(ψ) = eλψ(x)

, ρ(ψ) = e−sϕ(ψ), (8)

t (T − t) t (T − t)
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the weighted global energy I (ψ) and the weighted local function of observations NT,ω,ψ are defined by:

I (ψ) =
∫ ∫
Q

ρ2
(

1

sη

(|ut |2 + |�u|2) + |u|6 + sλ2η|∇u|2 + s3λ4η3|u|2 + s2λ2η2|u|4
)

dx dt,

NT,ω,ψ(u) =
∫ ∫

(0,T )×ω

ρ2(s3λ4η3|u|2 + s2λ2η2|u|4)dx dt +
∫ ∫
Q

ρ2|G|2 dx dt.

Theorem 3.1. There exists λ and C only depending on Ω and ω such that, for any λ � λ, s � s = C(Ω,ω,T , a0, a1)×
e2λ‖ψ‖∞ , for any G ∈ L2(Q) and u0 ∈ L2(Ω), the solution u of (5) satisfies

I (ψ) � CNT,ω,ψ(u). (9)

Corollary 3.2. Let u be a weak solution of (5) with G = 0. If u = 0 in (0, T ) × ω, then u = 0 in Q.

Remark 1. If one replaces Neumann boundary conditions by homogeneous Dirichlet boundary conditions in (5),
Theorem 3.1 still holds and is obtained more easily since most of boundary terms when obtaining the Carleman
inequality vanish. But here we are interested in Neumann boundary conditions.

Remark 2. A second Carleman inequality can be obtained with boundary observations using a weight ψ ∈ C2(Ω)

such that ψ = 0 on ∂Ω \ γ , ψ > 0 on γ ′, |∇ψ | > 0 in Ω , where γ ′ � γ ⊂ ∂Ω . Note that in this case we have to
control some boundary terms involving the tangential derivative ∂u

∂τ
along γ . This can be done by using an interpolation

argument and the elliptic regularity. The unique continuation property of Corollary 3.2 is still true if we assume that
u = 0 in (0, T ) × γ .

Sketch of the proof of Theorem 3.1. We define w = e−sϕu. Then, if u satisfies (5), w is solution of P 1
ψ(w) +

P 2
ψ(w) = Hψ(w) where P 1

ψ(w) = −�w − s2λ2η2|∇ψ |2w + sϕtw + 3a
4 e2sϕw3, P 2

ψ(w) = wt + 2sλη∇ψ · ∇w +
2sλ2|∇ψ |2ηw + a

4 e2sϕw3, Hψ(w) = e−sϕG(esϕw) − sλη�ψw + sλ2|∇ψ |2ηw and, as in [5], we estimate
(P 1

ψ,P 2
ψ)L2(Q) from below.

Note that the decomposition is similar to the standard decomposition for the heat equation [5] except for the cubic
terms in w3. The integrals coming from the nonlinear terms in P 1

ψ , P 2
ψ give the terms in |u|4 and |u|6 in I (ψ) and the

other additional terms can be absorbed by the dominating positive terms.
Since we consider Neumann boundary conditions, we also have to deal with the boundary integrals. The idea

(we refer for instance to [5] and [4]) is to do the calculations for w(ψ) and also for w(−ψ) and then sum up the
two inequalities. This allows one to cancel the boundary integrals and to obtain the inequality I (ψ) + I (−ψ) �
C(NT,ω,ψ(u) + NT,ω,−ψ(u)). Thus, since I (ψ) � I (ψ) + I (−ψ) and NT,ω,−ψ(u) � NT,ω,ψ(u), we obtain (9).
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