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Abstract

Using multiple Wiener–Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general
Hermite process of order q with long-memory (Hurst) parameter H ∈ ( 1

2 ,1). We apply our results to the construction of a strongly
consistent estimator for H . It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after
normalization, to a standard Rosenblatt random variable. To cite this article: A. Chronopoulou et al., C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Application du calcul de Malliavin à l’estimation du paramètre de mémoire longue pour des processus non-gaussiens.
Nous servant des intégrales multiples de Wiener–Itô et du calcul de Malliavin, nous étudions la variation quadratique renormalisée
d’un processus de Hermite général d’ordre q avec paramètre de mémoire longue H ∈ ( 1

2 ,1). Nous appliquons nos résultats à
la construction d’un estimateur fortement consistent pour H . Il est démontré que l’estimateur est asymptotiquement non-nor-
mal, et converge en moyenne de carrés, après normalisation, vers une variable aléatoire de Rosenblatt standard. Pour citer cet
article : A. Chronopoulou et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A stochastic process {Xt : t ∈ [0,1]} is called self-similar with self-similarity parameter H ∈ (0,1) when typical
sample paths look qualitatively the same irrespective of the distance from which we look at them, i.e. for any fixed
time-scaling constant for c > 0, the processes c−H Xct and Xt have the same distribution. Self-similar stochastic
processes are well suited to model physical phenomena that exhibit long memory. The most popular among these
processes is the fractional Brownian motion (fBm), because it generalizes the standard Brownian motion and its self-
similarity parameter can be interpreted as the long memory parameter.
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In this article we study a more general family of processes, the Hermite processes. Every process in this family has
the same covariance structure, and thus the same long memory property, as fBm:

Cov(Xt ,Xs) = E[XtXs] = 2−1(s2H + t2H − |t − s|2H
)
, s, t ∈ [0,1]. (1)

A Hermite process can be defined in two ways: as a multiple integral with respect to a standard Wiener process or as
a multiple integral with respect to an fBm with suitable H . We adopt the first approach.

Definition 1.1. The Hermite process (Z
(q,H)
t )t∈[0,1] of order q � 1 and parameter H ∈ ( 1

2 ,1) is given by

Z
(q,H)
t = d(H)

t∫
0

. . .

t∫
0

dWy1 · · ·dWyq

( t∫
y1∨···∨yq

∂1K
H ′

(u, y1) · · · ∂1K
H ′

(u, yq)du

)
, t ∈ [0,1] (2)

where W is a standard Wiener process, KH ′
is the kernel of fBm (see [4, Chapter 5]) and H ′ = 1 + H−1

q
.

The constant d(H) := (2(2H−1))1/2

(H+1)H 1/2 is chosen to match the covariance formula (1). As a multiple Itô integral of order

q of a non-random function with respect to Brownian motion, Z(q,H) belongs in the qth Wiener chaos. For q > 1,
it is far from Gaussian. Like fBm, all Hermite processes Z(q,H) are H -self-similar and have stationary increments
and Hölder-continuous paths of any order δ < H . Moreover, they exhibit long-range dependence in the sense that the
auto-correlation function is not summable. They encompass the fBm (q = 1) and the Rosenblatt process (q = 2).

The statistical estimation of H is of great interest and importance, since H describes the memory of the process
as well as other regularity properties. Several methodologies to the long-memory estimation problem have been pro-
posed, such as wavelets, variations, maximum likelihood methods (see [1]). Our approach is based on the quadratic
variation of the process, by analogy to the techniques which have been used for fBm for many years (see references
in [2]), and more recently in [6].

2. Variations of the Hermite process

Let Zq,H be a Hermite process of order q with self-similarity index H ∈ ( 1
2 ,1) as in Definition 1.1. Assume Zq,H

is observed at discrete times { i
N

: i = 0, . . . ,N} and define the centered quadratic variation statistic VN :

VN = −1 + 1

N

N−1∑
i=0

N2H
(
Z

(q,H)
i+1
N

− Z
(q,H)
i
N

)2
. (3)

Note that N−2H = E[(Z(q,H)

(i+1)/N
− Z

(q,H)
i/N )2] is a normalizing factor. To compute the variance of VN we expand

VN in the Wiener chaos. Using Definition 1.1 one sees that Z
(q,H)

(i+1)/N − Z
(q,H)
i/N = Iq(fi,N ), where Iq(·) is the

Wiener–Itô integral of order q and fi,N (y1, . . . , yq) is a non-random symmetric H -dependent function of q vari-
ables. Using the product formula for multiple Wiener–Itô integrals (see [4, Proposition 1.1.3]), we can write
|Iq(fi,N )|2 = ∑q

l=0 l!(Cl
q)2I2q−2l (fi,N ⊗l fi,N ), where the f ⊗l g denotes the l-contraction of the functions f and g.

In this way we obtain the Wiener-chaos expansion of VN

VN = T2q + c2q−2T2q−2 + · · · + c4T4 + c2T2, (4)

where c2q−2k := k!(q
k

)2 are the combinatorial constants from the product formula for 0 � k � q − 1, and T2q−2k :=
N2H−1I2q−2k(

∑N−1
i=0 fi,N ⊗k fi,N ). This decomposition allows us to find VN ’s precise order of magnitude via its

variance’s asymptotics, as proved in the following lemma.

Lemma 2.1. With cH,q := 4d(H)4(H ′(2H ′−1))2q−2

(4H ′−3)(4H ′−2)
, it holds that

lim
N→∞ E

[
c−1
H,qN2

(
2−2H ′)

c−2
2 V 2

N

] = lim
N→∞ E

[
c−1
H,qN2

(
2−2H ′)

c−2
2 T 2

2

] = 1.



A. Chronopoulou et al. / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 663–666 665
Proof. To establish this result we only need to estimate the L2-norm of each term appearing in the chaos decomposi-
tion, since they are orthogonal in L2(Ω). This calculation is achieved by using the so-called isometry property (see [4,
Section 1.1.2]) which states that E[|Ik(f )|2] = k!‖f ‖2

L2([0,1]k). It turns out that limN→∞ E[c−1
H,qN(2−2H ′)(2)T 2

2 ] = 1

and E[N2(2−2H ′)T 2
2q−2k] = O(N−2(2−2H ′)2(q−k−1)). Therefore the dominant term in the decomposition is T2, and the

result follows. �
The following theorem gives the precise asymptotic distribution of VN . Unlike the case q = 1, when q � 2 there is

no range of H for which asymptotic normality holds.

Theorem 2.2. For H ∈ (1/2,1) and q = 2,3,4, . . . , let Z(q,H) be a Hermite process of order q and parameter H (see

Definition 1.1). Then c
−1/2
H,q c−1

2 N
2−2H

q VN converges in L2(Ω) as N → ∞ to a standard Rosenblatt random variable
R with parameter H ′′ := 2(H − 1)/q + 1; that is, R is the value at time 1 of a Hermite process of order 2 and
parameter H ′′.

Proof. Let Ii := [ i
N

, i+1
N

], let H ′ = 1 + (H − 1)/q , and a(H ′) = H ′(2H ′ − 1). In order to understand the behavior

of the renormalized VN , it suffices to study the limit of the term N2−2H ′
T2. Indeed, from the proof of Lemma 2.1,

the remaining terms in the chaos expansion of N2−2H ′
VN , i.e. N(2−2H ′)T2q−2k , converge to zero. Since N2−2H ′

T2
is a second chaos random variable it is now necessary and sufficient to prove that its symmetric kernel converges in
L2([0,1]2) to c

1/2
H,q times the kernel of the Rosenblatt process at time 1 (see [4, Section 1.1.2]). Observe that the kernel

of N2−2H ′
T2 can be written as a sum of two terms: N2(H−H ′)+1 ∑N−1

i=0 fi,N ⊗q−1 fi,N = f N
2 + r2, with

f N
2 (y, z) := N2(H−H ′)+1d(H)2a(H ′)q−1

N−1∑
i=0

1
y∨z� i

N

∫ ∫
Ii×Ii

dv du∂1K(u,y)∂1K(v, z)|u − v|2(H ′−1)(q−1).

We can show that the remainder term r2(y, z) converges to zero in L2([0,1]2), as N → ∞. Next, for each fixed i,
one replaces u and v by the left endpoint of Ii , namely i/N . This approximation results in a function f̌ N

2 which is
pointwise asymptotically equivalent to f N

2 ; equivalence in L2([0,1]2) is obtained via dominated convergence. The
approximant f̌ N

2 itself is immediately seen to be a Riemann sum approximation, for fixed y, z, of the integral defining
the kernel of the Rosenblatt process at time 1, as in Definition 1.1 for q = 2. To pass from pointwise to L2([0,1]2) con-
vergence, dominated convergence is used again, the key point being that one calculates by hand that ‖ cst f̌ N

2 ‖2
L2([0,1]2)

equals
∑N−1

i,j=0 N−2| ∫ i∧j/N

0 ∂1K
H ′

(u, y)∂1K
H ′

(j/N,y)dy|2; bounding this expression by correlations of increments
of fBm, one finds an explicit series which is bounded if H ′ > 5/8; this always holds since q � 2 implies H ′ � 3/4. �

In addition to T2, it is interesting to explore the behavior of the remaining terms in the chaos expansion of VN .
In the following theorem we study the convergence of the term of greatest order in this expansion, T2q . It turns out
this term does have a normal limit when H < 3/4; this familiar threshold (see [2]) is the one obtained for normal
convergence of VN in the case of fBm (q = 1). What we discover here is that when q = 1, the only term in VN is to be
interpreted as T2q , not T2; but when q � 2, the term T2q dominates T2, and therefore VN cannot converge normally.

Theorem 2.3. Let Z(q,H) be a Hermite process as in the previous theorem. Let T2q be the term of order 2q in the

Wiener chaos expansion of VN . For every H ∈ (1/2,3/4), x
−1/2
1,H

√
N T2q converges to a standard normal distribution,

where x1,H is a constant depending only on H .

Proof. In order to prove this result we use a characterization of the convergence of a sequence of multiple stochas-
tic integrals to a Normal law by Nualart and Ortiz-Latorre (Theorem 4 in [5], which states that if FN is in the
qth chaos and E[F 2

N ] → 1 and E[(‖DFN‖2
L2[0,1] − 2q)2] → 0 then FN converges to a normal; see also [3]). Let

FN = x
−1/2
1,H

√
N T2q . Using the same method as in Lemma 2.1, we get limN→∞ E[F 2

N ] = 1. Thus, it remains to

check that the Malliavin derivative norm ‖DFN‖2
L2[0,1] → 2q in L2(Ω). Using E[F 2

N ] → 1 and a general imme-

diate calculation, we get limN→∞ E‖DFN‖2
2 = 2q . The proof is completed by checking that ‖DFN‖2

2
L [0,1] L [0,1]
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converges in L2(Ω) to its mean. To do this, since it is a variable with a finite chaos expansion, it is sufficient to
check that its variance converges to 0. The ensuing calculations begin with the explicit computation of DrFN as
x

−1/2
1,H

√
N N2H−1(2q)I2q−1(

∑N−1
i=0 (fi,N ⊗ fi,N )(·, r)), and are similar to those needed to prove Theorem 2.2; their

higher complexity reduces via polarization. �
Remark 1. It is possible to give the limits of the terms T2q−2 to T4 appearing in the decomposition of VN . All these
renormalized terms should converge to Hermite random variables of the same order as their indices. This “reproduc-
tion” property will be investigated in a subsequent article.

3. Estimation of the long-memory parameter H

Assume that we observe a Hermite process of order q and self-similarity index H in discrete time. From these data
we can compute the quadratic variation SN := 1

N

∑N−1
i=0 (Z

(q)

(i+1)/N − Z
(q)
i/N )2. We can immediately relate SN to the

scaled quadratic variation VN : we have 1 + VN = N2H SN . By Lemma 2.1, limN→∞ VN = 0 in L2(Ω); since VN has
a finite Wiener chaos decomposition, the convergence also holds in any Lp(Ω). Taking p large enough, the Borel–
Cantelli lemma implies that VN → 0 almost surely. Therefore, taking logarithms, 2H logN + logSN → 0 almost
surely. We have thus proved the following.

Proposition 3.1. Let ĤN := − logSN

2 logN
; it is a strongly consistent estimator for H : limN→∞ ĤN = H a.s.

The next step is to determine the asymptotic distribution of ĤN . It turns out that we have convergence to a Rosen-
blatt random variable in L2(Ω), according to the following theorem.

Theorem 3.2. There is a standard Rosenblatt random variable R with parameter 2H ′ − 1 such that

lim
N→∞ E

[∣∣2N2−2H ′
(H − Ĥ ) logN − c2c

1/2
H,qR

∣∣2] = 0.

Proof. By definition of ĤN in Proposition 3.1, and the relation 1 + VN = N2H SN , we have

2(H − ĤN) logN = log(1 + VN). (5)

From Theorem 2.2 we already know that a standard Rosenblatt r.v. R with parameter 2H ′ − 1 exists such that
limN→∞ E[|N2−2H ′

VN − cR|2] = 0. From (5) we immediately get

E
[∣∣2N2−2H ′

(H − Ĥ ) logN − cR
∣∣2] � 2E

[∣∣N2−2H ′
VN − cR

∣∣2] + 2N4−4H ′
E

[∣∣VN − log(1 + VN)
∣∣2]

.

The theorem follows by showing that E[|VN − log(1 + VN)|2] = o(N4H ′−4), which is easily obtained. Indeed, this
expectation is of order E[V 4

N ], which, since VN has a finite chaos expansion, is of order (E[V 2
N ])2 = O(N8H ′−8) by

Lemma 2.1. �
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