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Abstract

The Witten deformation is an analytical method proposed by Witten which, given a function f :M → R on a smooth compact
Riemannian manifold M , leads to a proof of the Morse inequalities. In this Note we generalise the Witten deformation to singular
complex algebraic curves X with cone-like singularities, and functions on X which we call admissible Morse functions. They are
particular examples of stratified Morse functions in the sense of the theory developed by Goresky/MacPherson. To cite this article:
U. Ludwig, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le complexe de Witten sur des courbes algébriques complexes à singularités coniques. Soit M une variété Riemannienne
compacte et soit f :M → R une fonction de Morse sur M . La méthode de Witten utilise une déformation du complexe de de
Rham pour démontrer les inegalités de Morse. Le but de cette Note est d’étendre cette méthode au cas des courbes algébriques
complexes à singularités coniques, munis de fonctions appelées fonctions de Morse admissibles. Ces fonctions sont des fonctions
de Morse stratifiées au sens de la théorie de Goresky/MacPherson. Pour citer cet article : U. Ludwig, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a singular complex algebraic curve. For simplicity of presentation we will assume that all singularities
Σ := {p1, . . . , pN } of X are unibranched. For i = 1, . . . ,N we denote by m(pi) = mi ∈ N, mi � 2, the multiplicity
of X at pi . Let g be a metric on X such for each pi ∈ Σ there exists an open neighbourhood U(pi) in X such that
(U(pi) − pi, g|Ui−pi

) is isometric to (coneε(S
1
mi

),dr2 + r2 dϕ2) for some ε > 0. Hereby for m ∈ N we denote by S1
m

the circle of length 2πm and by coneε(S
1
m) := {(r, ϕ) | r ∈ (0, ε), ϕ ∈ S1

m}. We study a certain class of functions on X,
which we call admissible Morse functions:

Definition 1. Let f :X → R be a continuous function which is smooth outside the singularities of X. The function
f is called an admissible Morse function if the restriction f|X−Σ is Morse (in the smooth sense) and moreover if for
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any singular point p ∈ Σ there exist ap, bp ∈ R, (ap, bp) �= (0,0), such that the function f has the following form in
local coordinates (r, ϕ) near p: f (r,ϕ) = f (p) + r(ap cos(ϕ) + bp sin(ϕ)).

The above assumptions on g and f are motivated by the following observation: (X,g) is a metric model for the
singular complex algebraic curve X ⊂ P

n(C), equipped with the metric g̃ induced by the Fubini–Study metric on
P

n(C). Admissible Morse functions are particular examples of stratified Morse functions in the sense of the theory
developed by Goresky/MacPherson in [4]. More precisely, let p ∈ X be a unibranched singular point of multiplicity m.
One has a normalisation map π : V (0) ⊂ C → U(p)∩X, t �→ (z1(t), . . . , zn+1(t)) = (tm, tq2f2(t), . . . , t

qn+1fn+1(t))

such that π|V −{0} is a biholomorphic map, m < q2 < q3 < · · · < qn+1 and fk(0) �= 0. Then (V −{0},π∗g̃) is isometric
to (cone(S1

m), (1 + O(r1/m))(dr2 + r2 dϕ2)). The affine line l := {z2 = · · · = zn = 0} is the tangent line to X. Let
F : P

n(C) ∩ U(p) → C be a holomorphic function such that f := Re(F )|X : X ∩ U(p) → R is a stratified Morse
function in the sense of [4] (Part II). The non-degeneracy condition in [4] implies that locally near p the function F

has the form F = F(p)+∑
aizi + O(z2), where a1 �= 0. In local coordinates (r, ϕ) we get f = r(a cosϕ + b sinϕ)+

O(r1+δ), δ > 0.
The de Rham complex of smooth forms with compact support (Ω∗

0 (X − Σ),d, 〈, 〉) has a unique extension into
a Hilbert complex (C, d̄, 〈, 〉) in the Hilbert space of square integrable forms (see [3] for the definition of a Hilbert
complex). Hereby d̄ denotes the closure of d and 〈, 〉 denotes the L2-metric: 〈α,β〉 = ∫

X−Σ
α ∧∗gβ . The cohomology

of the complex (C, d̄, 〈, 〉) is the so-called L2-cohomology of X, Hi
(2)(X) := ker d̄i/ im d̄i−1, i = 0,1,2. We denote by

b
(2)
i (X) := dimHi

(2)(X), the L2-Betti numbers of X. The index of a critical point p ∈ X−Σ is the number of negative
eigenvalues of the Hessian of f in p. The singular points p ∈ Σ are considered to be critical points for f of index 1.
For i = 0,1,2 we denote by Criti (f ) the set of critical points for f of index i and by ci(f ) the number of critical
points of index i “counted with multiplicities”: ci(f ) := ∑

p∈Criti (f ) n(p), where n(p) = 1 for all critical points
p ∈ X − Σ and n(p) = m(p) − 1 for p ∈ Σ .

The main goal of this Note is to generalise the Witten deformation (see [7]) to the above situation and to give an
analytic proof of the below Morse inequalities:

Theorem 2. Let (X,g) be a complex algebraic curve as above and let f :X → R be an admissible Morse function
on X. Then the following Morse inequalities hold:

c0(f ) � b
(2)
0 (X), c1(f ) − c0(f ) � b

(2)
1 (X) − b

(2)
0 (X),

2∑
i=0

(−1)ici(f ) =
2∑

i=0

(−1)ib
(2)
i (X). (1)

Note that the local situation near singular points of X is quite different from the one near smooth critical points. The
contribution of the singular points to the Morse inequalities is closely related to the lack of essential self-adjointness
of the Laplace operator (acting on smooth forms with compact support) in the presence of singularities. Moreover the
singular points of X contribute to the Morse inequalities in degree 1 and have to be counted with “multiplicities”.

Note that from Theorem 2 one can recover the Morse inequalities for intersection homology with middle perversity
(for the singular complex curve X with stratified Morse function f ) known already from stratified Morse theory [4]:
by the Cheeger–Goresky–MacPherson conjecture (proved in [6] in arbitrary dimension) the intersection cohomology
of the singular complex algebraic curve X is isomorphic to the L2-cohomology of X with respect to the metric on X

induced by the Fubini–Study metric on P
n(C). Since the L2-cohomology is a quasi-isometry invariant, the intersection

cohomology of X is also isomorphic to the L2-cohomology of X with respect to the conic metric g. Extending Wittens
program to the higher dimensional case will be more challenging, given that the natural metrics on algebraic varieties,
i.e. those induced from a metric on projective space are in general not of cone-type.

2. The Witten deformation of the complex (C, d̄, 〈, 〉) and the spectral gap theorem

The Witten method consists in deforming the de Rham complex into a complex (Ω∗
0 (X − Σ),dt , 〈, 〉), where

dtω = e−tf d(etf ω) = dω + t df ∧ ω. We denote by δt the formal adjoint of dt with respect to the L2-metric 〈, 〉.
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Proposition 3. The complex (Ω∗
0 (X−Σ),dt , 〈, 〉) has a unique extension into a Hilbert complex (C, d̄t , 〈, ). Moreover

the associated Laplacian �t = d̄t δ̄t + δ̄t d̄t with dom(�t ) = {Ψ ∈ L2(Λ∗(T ∗(X − Σ))) | d̄tΨ, δ̄tΨ, d̄t δ̄tΨ, δ̄t d̄tΨ ∈
L2(Λ∗(T ∗(X − Σ)))} is a nonnegative, self-adjoint, discrete operator such that ker(�t ) � ker d̄t,i/ im d̄t,i−1 �
Hi

(2)(X).

We call the operator �t with dom(�t ) the Witten Laplacian. The following result on the spectral properties of the
Witten Laplacian is the key result to the proof of Theorem 2.

Theorem 4 (Spectral gap theorem). There exist constants C1, C2, C3 and t0 > 0 depending on X and f such that
spec�t,i ∩ (C1e

−C2t ,C3t) = ∅ for any t > t0.

The proof of the spectral gap theorem consists in two steps. First we develop a model operator for �t in the
neighbourhood of a singular point p ∈ Σ of X of multiplicity m. A simple computation using (1) shows that locally
near p we have �t = � + (a2

p + b2
p)t2. We therefore define the model Witten Laplacian �

p
t as the following self-

adjoint operator acting on forms on the infinite cone cone(S1
m):

�
p
t = � + (

a2
p + b2

p

)
t2 and dom

(
�

p
t

) = {
Ψ | Ψ, d̄tΨ, δ̄tΨ, d̄t δ̄tΨ, δ̄t d̄tΨ ∈ L2(Λ∗(T ∗(cone

(
S1

m

))))}
.

We can show the following “local spectral gap theorem”:

Proposition 5. spec(�p
t,i ) = [t ′2,∞) in case i = 0,2. Moreover spec(�p

t,1) = {0} ∪ [t ′2,∞) with dim ker(�p

t,1) =
m−1, and all forms ω ∈ ker(�p

t,1) have the following asymptotic behaviour: ω ≈ e−t ′r√
t ′r dr +√

t ′r e−t ′r dϕ for t ′r � 0,

where t ′ =
√

a2
p + b2

p · t .

In the second step of the proof of the spectral gap theorem we follow the proof in the smooth case (see [1],
Section 9). Recall from the smooth theory that the model Witten Laplacian �

p
t in the neighbourhood of a critical

point p ∈ X − Σ has discrete spectrum spec(�p
t ) = 2Nt and dim ker(�p

t ) = 1. We denote by ωp(t) the generator of
ker(�p

t ). For a singular point p ∈ Σ of multiplicity m we denote by {ωp
j (t) | j = 1, . . . ,m − 1} a basis of ker(�p

t ).

Let νε : R
+ → R be a cut-off function with νε = 1 in [0, ε/2]. The forms Φ

p
j (t) := νε(‖x‖)ωp

j (t) can be identified

with L2-forms on X. We denote by

E(t) := span
{{

Φ
p

1 (t) := νεω
p(t) | p ∈ Crit(f ) − Σ

} ∪ {
Φ

p
j (t) | p ∈ Σ,j ∈ Ip := {

1, . . . ,m(p) − 1
}}}

.

We get an orthogonal splitting L2(Λ∗(T ∗(X − Σ))) = E(t) ⊕ E(t)⊥. The closed operator At := d̄t + δ̄t with
dom(At ) = dom(d̄t ) ∩ dom(δ̄t ) ⊂ L2(Λ∗(T ∗(X − Σ))) can be written in matrix form

At =
(

At,1 At,2
At,3 At,4

)
according to the splitting E(t) ⊕ E(t)⊥.

Note that dom(At ) equipped with the norm ‖s‖1 := √‖(d + δ)s‖2 + ‖s‖2 is complete. We show the following esti-
mates on At as t → ∞:

Proposition 6. There exist constants c,C > 0 and t0 > 0 such that for all t > t0 we have

(i) For all s ∈ E(t) we have ‖Ats‖ = O(e−ct )‖s‖. In particular ‖At,1s‖ = O(e−ct )‖s‖, ‖At,3s‖ = O(e−ct )‖s‖.
(ii) For all s ∈ E(t)⊥ ∩ dom(At ) we get: ‖At,2s‖ � O(e−ct )‖s‖, ‖At,4s‖ � C(‖s‖1 + √

t‖s‖).

The proof of Proposition 6 is similar to the corresponding statements in the smooth case (see [1], Section 9). To
prove the estimates for forms s with support in a neighbourhood of a singular point of X Proposition 5 on the spectrum
of the model Witten Laplacian is crucial. As in [1], Section 9 (c) and (e), Proposition 6 allows to give estimates for

the resolvent of At − λ : dom(At ) → L2(Λ∗(T ∗(X − Σ))), where λ ∈ C, |λ| ∈ [e−ct/2,
C

√
t

2 ], with constants c,C as
in Proposition 6. We deduce the invertibility of the operator At − λ, and since �t − λ2 = (At − λ)(At + λ) we thus
get Theorem 4.
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3. Proof of the Morse inequalities

For i = 0,1,2 we define the R-vector space Ci by Ci := ⊕
p∈Criti (f )\Σ R · e

p

1 ⊕ ⊕
p∈Criti (f )∩Σ,j∈Ip

R · e
p
j . We

define a linear map Ji(t) : Ci → Ct,i by Ji(t)(e
p
j ) = Φ

p
j (t). We denote by (Ft , dt , 〈, 〉) the subcomplex of (Ct , dt , 〈, 〉)

generated by the eigenforms of �t to eigenvalues lying in [0,1]. We denote moreover by P(t, [0,1]) the orthogonal
projection operator from Ct on Ft with respect to 〈, 〉.

Proposition 7. There exist a constant c > 0 and an L2-integrable function ρ :X → R such that for all v ∈ Ci and all
x ∈ X: |[(Pi(t, [0,1]) ◦ Ji(t) − Ji(t))v](x)| = ρ(x)O(e−ct )‖v‖.

The proof of Proposition 7 is similar to the proof of Theorem 6.7 in [2], where we have to replace the elliptic
estimates with the so-called singular elliptic estimates (see [5]). We can now prove the Morse inequalities: As a
corollary of Proposition 7 we get that the linear map Pi(t, [0,1]) ◦ Ji(t) : Ci → Ft,i is an isomorphism from Ci

onto Ft,i . Therefore the complex (Ft , dt , 〈, 〉) is a finite dimensional subcomplex of (Ct , dt , 〈, 〉) with dim Ft,i = ci(f ).
By Proposition 3 moreover ker(�t ) � H ∗(Ft , dt , 〈, 〉) � H ∗

(2)(X). The Morse inequalities in Theorem 2 now follow
by a standard algebraic argument.
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