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Abstract

In a previous Note the author gave a generalisation of Witten’s proof of the Morse inequalities to the model of a singular complex
algebraic curve X and a stratified Morse function f . In this Note a geometric interpretation of the complex of eigenforms of the
Witten Laplacian corresponding to small eigenvalues is provided in terms of an appropriate subcomplex of the complex of unstable
cells of critical points of f . To cite this article: U. Ludwig, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un complexe géométrique sur des courbes algébriques complexes à singularités coniques et fonctions de Morse admis-
sibles. Dans une Note précédente, l’auteur a donné une généralisation de la preuve de Witten des inegalités de Morse pour le cas
modèle d’une courbe algébrique complexe singulière et d’une fonction de Morse stratifiée. Le but de cette Note est de donner une
interprétation géométrique du complexe des formes propres du Laplacien de Witten pour de petites valeurs propres à l’aide d’un
sous-complexe approprié du complexe des cellules instables. Pour citer cet article : U. Ludwig, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a singular complex algebraic curve. For simplicity of presentation we will assume that all singularities
Σ := {p1, . . . , pN }, of X are unibranched. We denote by m(pi) = mi ∈ N, mi � 2, i = 1, . . . ,N , the multiplicity of
X at pi . Let g be a metric on X such for each pi ∈ Σ there exists an open neighbourhood U(pi) in X such that
(U(pi) − pi, g|Ui−pi

) is isometric to (coneε(S
1
mi

), dr2 + r2 dϕ2) for some ε > 0. Hereby for m ∈ N we denote by S1
m

the circle of length 2πm and by coneε(S
1
m) := {(r, ϕ) | r ∈ (0, ε), ϕ ∈ S1

m}.

Definition 1. Let f : X → R be a continuous function which is smooth outside the singularities of X. The function
f is called an admissible Morse function if the restriction f|X−Σ is Morse (in the smooth sense) and moreover if for
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any singular point p ∈ Σ there exist ap, bp ∈ R, (ap, bp) �= (0,0), such that the function f has the following form in
local coordinates (r, ϕ) near p: f (r,ϕ) = f (p) + r(ap cos(ϕ) + bp sin(ϕ)).

As explained in [5] (X,g) is a metric model for the singular complex algebraic curve X ⊂ P
n, equipped with the

metric induced by the Fubini–Study metric on P
n. Admissible Morse functions are particular examples of stratified

Morse functions in the sense of the theory developed in [2]. In [5] a generalisation of Witten’s proof of the Morse
inequalities is given for the singular situation defined above. For singular spaces with cone-like singularities the L2-
cohomology H ∗

(2)(X), i.e. the cohomology of the complex (C, d, 〈, 〉) of L2-integrable forms, is a topological invariant.

Note that H ∗
(2)(X) can also be computed by considering only the subcomplex (D, d, 〈, 〉) of smooth L2-integrable

forms on X \ Σ . The generalisation of Witten’s method to the singular algebraic curve consists in deforming the
complex (C, d, 〈, 〉) by means of the admissible Morse function f into a complex (Ct , dt , 〈, 〉). We denote by �t the
Witten Laplacian associated to the deformed complex. The Morse inequalities for L2-cohomology shown in [5] follow
from the properties of the subcomplex (Ft , dt , 〈, 〉) generated by the eigenforms of �t corresponding to the eigenvalues
in [0,1]. In the smooth situation Witten [6] conjectured that for t → ∞ the complex of eigenforms corresponding to
small eigenvalues converges to the so-called Thom–Smale complex. A proof of this fact based on semi-classical
analysis has been given by Helffer and Sjöstrand in [3]. A different proof relying on a result by Laudenbach [4] was
given by Bismut and Zhang in [1]. The goal of this Note is to provide a geometric interpretation of the complex of
(Ft , dt ) in terms of an appropriate subcomplex of the complex of unstable cells for the critical points of the admissible
Morse function f . The proofs given here extend ideas in [1] to the singular situation.

2. The combinatorial complex (Cu′
∗ , ∂∗)

Let us denote by Crit(f ) the set of critical points for f and by Criti (f ), i = 0,1,2, the set of critical points of index
i. Hereby we consider Σ ⊂ Crit1(f ). Let us denote by −∇gf the negative gradient vector field of f and by Φ the
induced flow. Note that the flow Φ is not defined for all time t ∈ R. However all critical points of f are fixed points of
the flow, and we can still define the stable/unstable sets: Wu/s(p) = {x ∈ X | there exist t−(x) < 0, t+(x) > 0 such
that limt→t∓(x) Φ(x, t) = p}. If p ∈ X − Σ is a critical point for f of index ind(p) it is well known that the stable
resp. unstable manifold is a (non closed) manifold of dimension dimWs(p) = 2 − ind(p) resp. dimWu(p) = ind(p).
It is not difficult to see that for p ∈ Σ the sets Wu/s(p) − {p} are manifolds of dimension 1 having m(p) connected
components. By rescaling and changing the coordinate on the link one can always assume that (ap, bp) = (1,0)

in Definition 1. Then locally near p the m(p) connected components of Wu(p) are Wu
j (p) = {(r, ϕ) ∈ U(p) | r ∈

R
+, ϕ = (2j + 1)π} for j ∈ Ĩp := Z/m(p)Z. The following proposition describes the boundary of the unstable sets.

It is a generalisation of Proposition 2 in [4] to our situation.

Proposition 2. Let f be an admissible Morse function such that ∇gf satisfies the Morse–Smale condition. Then
for each critical point p ∈ Crit(f ) the closure Wu(p) is a stratified space. Let p ∈ Crit(f ) \ Σ . Then the strata of
Wu(p)\Wu(p) can be of the following form: (a) Wu(q), for q ∈ Crit(f )−Σ , ind(q) < ind(p). (b) Wu

j (q), for q ∈ Σ ,

j ∈ Ĩq and 1 = ind(q) < ind(p), (c) {q}, where q ∈ Σ , ind(q) < ind(p).
Moreover the strata of type (b) “come in pairs”, i.e. one of the following possibilities holds:

(1) If there exists j ∈ Ĩq such that Wu
j (q) ⊂ ∂Wu(p) then either Wu

j−1(q) ⊂ ∂Wu(p) or Wu
j+1(q) ⊂ ∂Wu(p).

(2) Wu(p) has 2n connected components near Wu
j (q) such that Wu

j (q) is the boundary of n of these, while −Wu
j (q)

is the boundary of the other n.

Moreover for p ∈ Σ , j ∈ Ĩp we have Wu
j (p) � (0,1) and Wu

j (p) � [0,1] where one end of the compactification
corresponds to p and the other end corresponds to some q ∈ Crit0(f ).

We choose an orientation on the Wu’s, Wu
j (p) is oriented by the flow for p ∈ Σ,j ∈ Ĩp . The chain groups of the

complex (Cu∗ , ∂∗) are defined as follows: Cu
2 := ⊕

p∈Crit2(f ) R · [Wu(p)],
Cu

1 :=
⊕

p∈Crit1(f ), p/∈Σ

R · [Wu(p)
] ⊕

⊕
p∈Σ, j∈Ĩ

R · [Wu
j (p)

]
, Cu

0 :=
⊕

p∈Crit0(f )

R · [Wu(p)
] ⊕

⊕
p∈Σ

R · [{p}].

p
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Note that since Crit(f ) is finite the above chain groups are well-defined. The boundary of a generator σ ∈ Cu
i is

defined by ∂σ = ∑
n(σ, θ) · θ, where the sum is taken over all generators of Cu

i−1 and where n(σ, θ) = 0 if θ is not
in the closure of σ . Moreover, if θ is in the closure of σ the coefficient n(σ, θ) is defined as follows: Near θ the cell
σ has n = n+ + n− connected components such that θ is the oriented boundary of n+ of these and −θ is the oriented
boundary of the other n−. Then n(σ, θ) = n+ − n−. Let us denote by (Cu′

∗ , ∂∗) the subcomplex of (Cu∗ , ∂∗) generated
by the cells {[Wu(p)] | p ∈ Crit(f ) \ Σ} and {σu

i (p) := [Wu
i (p)] − [Wu

i−1(p)], p ∈ Σ, i = 1, . . . ,m − 1}. The fact

that (Cu′
∗ , ∂∗) is indeed a subcomplex follows from Proposition 2.

Note that the complex (Cu′
∗ , ∂∗) computes the intersection homology IH∗(X) of X: The decomposition of X

into unstable cells is a CW-decomposition of X and therefore H∗((Cu∗ , ∂∗)) � Hsing(X). Since X is a unibranched
curve and therefore (topologically) normal we have that Hsing(X) � IH∗(X). Moreover the inclusion of complexes
(Cu′

∗ , ∂∗) ↪→ (Cu∗ , ∂∗) is a quasi-isomorphism. Note however that the cells σu
j are not allowed in the sense of intersec-

tion homology.

Proposition 3. Let β ∈ Di , i.e. both β and dβ are square integrable. Let σ ∈ Cu′
i . Then the integral

∫
σ

β exists and

Stokes’ theorem holds. Thus integration yields a well-defined morphism of complexes
∫ : (Cu′

i , ∂) × (Di , d) → R.

3. The complex of eigenforms to small eigenvalues (Ft , dt )

Denote by (Ft , dt , 〈, 〉) the subcomplex of (Ct , dt , 〈, 〉) generated by the eigenforms of �t corresponding to eigen-
values λ ∈ [0,1]. We denote by P(t, [0,1]) the orthogonal projection operator from Ct on Ft (with respect to the
metric 〈, 〉). For p ∈ Σ of multiplicity m we set Ip := {1, . . . ,m − 1}. For a smooth critical point let Ip := {1}. Let
us shortly recall the construction of a basis for (Ft , dt ). As shown in [5] for a singular point p ∈ Σ of multiplicity m

we can construct a local model operator �
p
t on the infinite cone with the property that spec(�p

t ) ⊂ {0} ∪ [t2,∞) and
dim ker(�p

t ) = m−1. We assume again that (ap, bp) = (1,0) in Definition 1 and that m is odd. For ν ∈ { 1
m

, . . . , m−1
2m

}
set

γ 1
ν := tr

(
Kν−1(tr) cos(νϕ) + Kν(tr) cos

(
(ν − 1)ϕ

))
dϕ + t

(
Kν−1(tr) sin(νϕ) − Kν(tr) sin

(
(ν − 1)ϕ

))
dr,

γ 2
ν := tr

(
Kν−1(tr) sin(νϕ) + Kν(tr) sin

(
(ν − 1)ϕ

))
dϕ + t

(−Kν−1(tr) cos(νϕ) + Kν(tr) cos
(
(ν − 1)ϕ

))
dr,

where Kν is the modified Bessel function of the second kind. For j ∈ Ip we denote by νj := j
m

if j � m−1
2 and

νj := j
m

− m−1
2m

if m
2 < j � m− 1. Define ω

j
p := γ 1

νj
for j � m−1

2 and ω
j
p := γ 2

νj
for m

2 < j � m− 1. Then ker(�p
t ) =

span{ωj
p(t), j ∈ Ip}. In case m is even one has to add the form ω

m/2
p := trK1/2 cos(1/2ϕ)dϕ + tK1/2 sin(1/2ϕ)dr .

The model operator for a smooth critical point is well-known and in this case we have that ker(�p
t ) = span{ω1

p}. Let

νε : R
+ → R be a cut-off function with νε = 1 in [0, ε/2]. The forms Φ

j
p(t) := β

j
p(t)−1νε(‖x‖)ωj

p(t), where β
j
p(t) :=

‖νε(‖x‖)ωj
p(t)‖, can be identified with forms in (Ct , dt , 〈, 〉). Note that {P(t, [0,1])(Φp

j (t)), p ∈ Crit(f ), j ∈ Ip}
yields a basis of Ft which is orthonormal up to a term of order O(e−ct ).

4. Comparison theorem

Lemma 4. Let p ∈ Σ . There exists A := (ali) ∈ GLm−1(R) such that
∫
ẽ i
p
ω

j
p = δij , where ẽ i

p := ∑m−1
l=1 ali([Ll] −

[Ll−1]), Ll := {(r, ϕ) ∈ cone(S1
m) | ϕ = (2l + 1)π}.

For p ∈ Crit(f ) \ Σ define e1
p := [Wu(p)], Wu(e1

p) := Wu(p). For p ∈ Σ and j ∈ Ip define

e
j
p :=

∑
l∈Ip

alj

[
σu

l (p)
]
, Wu

(
e
j
p

) :=
∑
l∈Ip

alj σ
u
l (p).

We denote by �̃t the Laplacian associated to the complex (C, d, 〈, 〉t ) , where 〈, 〉t is the twisted metric 〈α,β〉t :=∫
α ∧ ∗βe−2f t . Denote by (̃Ft , d, 〈, 〉t ) the subcomplex of eigenforms corresponding to eigenvalues of �̃t in [0,1].

Obviously the map ω �→ ef tω induces an isomorphism of complexes (Ft , dt , 〈, 〉) → (̃Ft , d, 〈, 〉t ). Denote by Ri(t)
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the linear map Ri(t) : Hom(Cu′
i ,R) → F̃

i
t , [ej

p]∗ �→ ef tP (t, [0,1])(Φj
p). For t large enough Ri(t) is an isomor-

phism of vector spaces. Note that by elliptic regularity the complex (̃Ft , d) can be considered as a subcomplex of
the complex (D, d) and therefore by Proposition 3 the integration morphism P∞,t : (̃Fi

t , d) → Hom(Cu′
i ,R), ω �→∑

p∈Criti (f ),j∈Ip
(
∫
Wu(e

j
p)

ω)[ej
p]∗ is well-defined. By Stokes’ theorem P∞,t is a morphism of complexes. Denote by

F ∈ End(Hom(Cu′
i ,R)) the linear map that acts on [ej

p]∗ by multiplication with f (p). Let I ∈ End(Hom(Cu′
i ,R))

denote the multiplication by i. One can now prove the following two results, which generalise Theorem 6.11 and
Theorem 6.12 in [1] respectively to the singular situation.

Theorem 5. (a) The asymptotic behaviour of P∞,t ◦ R(t) as t → ∞ is P∞,t ◦ R(t) = et F (π
t
)(I−1)/2(1 + O(e−ct )).

In particular for large t the homomorphism of vector spaces P∞,t is an isomorphism. (b) There exists c > 0 such that

for t → ∞, R(t)−1 ◦ d ◦ R(t) =
√

t
π
(1 + O(e−ct ))−1e−t F ∂∗et F (1 + O(e−ct )).

The proof of Theorem 5(a) is similar to that of Theorem 6.11 in [1]. In the singular situation one uses Proposition 2,
Lemma 4 as well as Proposition 7 in [5]. Part (b) follows directly from (a). The theorem above shows that for t → ∞
the complex of eigenforms corresponding to small eigenvalues converges to the geometric complex (Cu′

∗ , ∂∗). Thus,
since we know that H ∗((Ft , dt , 〈, 〉)) � H ∗

(2)(X) Theorem 5 gives a second proof of the fact, that the complex (Cu′
∗ , ∂∗)

computes the intersection homology of X.
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