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Abstract

We give a complete list of complex projective complete intersections admitting Riemannian metrics of positive scalar curvature.
To cite this article: F. Fang, P. Shao, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Intersections complètes admettant des métriques à courbure salaire positive. Nous donnons la liste des variétés complexes
projectives intersections complètes, qui admettent une métrique riemannienne à courbure scalaire positive. Pour citer cet ar-
ticle : F. Fang, P. Shao, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In their landmark works, Gromov and Lawson [4–6], as well as Schoen and Yau [9], made a series of fundamental
contributions to the problem of when a manifold admits a Riemannian metric with positive scalar curvature. In partic-
ular, the Gromov–Lawson conjecture was raised, which was later solved by Stolz [10]. All these together shows that
any simply connected closed n-manifold of dimension n � 5 admits a Riemannian metric of positive scalar curvature
if it is not Spin, and a Spin manifold admits such a metric if and only if its Atiyah–Milnor invariant (an element of
KO−n(pt)) vanishes.

It is always interesting to study algebraic manifolds from a differential geometry point of view. In this Note we are
concerned with the question of which complete intersections admit Riemannian metrics with positive scalar curvature.
Recall that a complete intersection V n

d1,...,dr
⊂ CP

n+r is the transversal intersection of hypersurfaces in the projective
space defined by homogeneous polynomials of degrees d1, . . . , dr , respectively; here we call {d1, . . . , dr} the multide-
gree. By the Barth–Lefschetz theorem, every complete intersection of dimension � 2 is simply connected. It turns out
by using Stolz’s result [10] that we only need to determine the Atiyah–Milnor invariants of complete intersections of
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complex dimension at least 3. In complex dimension 2 we need some special treatment using Seiberg–Witten theory.
Our main result is as follows:

Theorem 1. V n
d1,...,dr

admits a Riemannian metric of positive scalar curvature if and only if one of the following holds:
(1.1) (d1, . . . , dr ) = (1, . . . ,1) if n = 1.
(1.2) (d1, . . . , dr ) = (2), (3), (2,2) or (1, . . . ,1) if n = 2.
(1.3) n + r + 1 − (d1 + · · · + dr) is odd or n + r + 1 − (d1 + · · · + dr) is even but positive, if n = 2k � 4.
(1.4) n = 4k + 3.
(1.5) n = 4k + 1 � 5 and 4k + r + 2 − ∑

di is odd or 4k + r + 2 − ∑
di is even but

∑(
(4k+r±d1±···±dr−1+dr )/2

4k+r+1

) ≡
0 mod 2, where the sum is taken over the 2r−1 possible terms.

The Â-genus of complete intersections were calculated by Brooks and (1.3) was proved in [2]. (1.1) is trivial and
(1.4) follows directly by Gromov–Lawson–Stolz [10]. For r = 1 (1.5) was proved by Zhang [13] and for r = 2 it was
due to Feng–Zhang [3].

2. Proof of assertion (1.2)

For a complete intersection surface V 2
d1,...,dr

, the Kodaira dimension is as follows ([1]):

κ
(
V 2

d1,...,dr

) =
⎧⎨
⎩

−∞, {di} = (2), (3), (2,2), (1, . . . ,1);
0, {di} = (4), (2,3), (2,2,2);
2, otherwise.

(1)

To prove assertion (1.2) we only need to show that the Kodaira dimension must be equal to −∞ if it admits a metric
of positive scalar curvature.

First, it is a standard result in algebraic geometry that 2-dimensional complete intersections with multidegree

(2), (3), (2,2), (1, . . . ,1) are diffeomorphic to CP
1 × CP

1,CP
2�5CP

2,CP
2�6CP

2 and CP
2 respectively. By [4,9]

the connected sum of two 4-manifolds with positive scalar curvature metrics admits also such a metric. Hence all
these four manifolds admit metrics of positive scalar curvature. It remains only to prove that 2-dimensional complete
intersections with Kodaira dimension 0 or 2 do not admit metrics of positive scalar curvature.

It is well known that the total Chern class of complete intersection V n
d1,...,dr

is:

c
(
V n

d1,...,dr

) = (1 + x)n+r+1

(
i=r∏
i=1

(1 + dix)−1

)
, (2)

where x denotes the pull-back of the Kähler class from CP
n+r . It is easy to verify that complete intersections with

Kodaira dimension 0 all have vanishing first Chern class, namely they are all K3 surfaces and have b+
2 = 3 (the

dimension of self-dual harmonic 2-forms). A well-known result in Seiberg–Witten theory (cf. [8], Corollary 5.1.8)
asserts that, a Riemannian 4-manifold with positive scalar curvature does not have any non-trivial monopole, and
thus, all Seiberg–Witten invariants vanish if b+

2 > 1. On the other hand, the Seiberg–Witten invariant of any Kähler
surface with b+

2 > 1 is not trivial with the standard Spinc-structure (cf. [11]). Therefore we need only to consider the
complete intersections of general type, i.e., with Kodaira dimension 2, and with b+

2 � 1. Obviously, every complete
intersection surface satisfies b+

2 � 1.
Let S denote a general type surface S with b+

2 (S) = 1. Recall the Miyaoka–Yau inequality c2
1(S) � 3c2(S) (cf. [7]).

By the signature theorem 1
3p1(S) = σ(S) = 1

3 (c2
1(S) − 2c2(S)). Note that S is simply connected, so the first Betti

number b1(S) = 0. This together with the Miyaoka–Yau inequality shows

4
c2

1(S) � c2
1(S) + c2(S) = 3

(
σ(S) + χ(S)

) = 6
(
1 − b1(S) + b+

2 (S)
) = 12, (3)
3
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where σ(S),χ(S) denote the signature and Euler number respectively. On the other hand, if S = V 2
d1,...,dr

, by formula
(2) we have

c2
1

(
V 2

d1,...,dr

) =
(

r∑
1

di − (r + 3)

)2 ∏
di

and by (3)(
r∑
1

(di − 1) − 3

)2 ∏
di � 9.

This restricts our attention to very few possible surfaces of general type, and a careful check by (2) shows that none
of them can have b+

2 = 1.

3. Proof of assertion (1.5)

According to Zhang [12], we say that a pair of manifolds (K,B) is a characteristic pair if they satisfy the following
conditions:

• dim(K) = 8k + 4, dim(B) = 8k + 2.
• K is an oriented Spinc manifold with a Spinc-structure c ∈ H 2(K;Z).
• B is a submanifold of K and [B] ∈ H8k+2(K,Z) is the Poincaré dual of c.

It is easy to see that B is a spin manifold. Let Â(B) ∈ KO−2(pt) ∼= Z2 denote the Atiyah–Milnor invariant of B .
In [12] Zhang found the following remarkable formula

Â(B) ≡ 〈
Â(K) exp(c/2), [K]〉 mod 2. (4)

By formula (2) we know that V 4k+1
d1,...,dr

is a Spin manifold if and only if 4k + r + 2 − ∑
di is even. Now we are

going to use Zhang’s formula (4) to calculate the Atiyah–Milnor invariant of a spin complete intersection V 4k+1
d1,...,dr

.

Observe that V 4k+1
d1,...,dr

⊂ V 4k+2
d1,...,dr−1

is a submanifold of codimension 2, Poincaré dual to drx. With c = drx, it is

easy to see that (V 4k+2
d1,...,dr−1

,V 4k+1
d1,...,dr

) is a characteristic pair in the sense of Zhang [12] mentioned above. Therefore,
the formula (4) implies

Â
(
V 4k+1

d1,...,dr

) ≡
〈
Â

(
V 4k+2

d1,...,dr−1

)
exp

(
drx

2

)
,
[
V 4k+2

d1,...,dr−1

]〉
mod 2. (5)

Note that the normal bundle of V 4k+2
d1,...,dr−1

⊂ CP
4k+1+r is Hd1 ⊕ · · · ⊕ Hdr−1 , where Hd1 , . . . ,Hdr−1 are the complex

line bundles with first Chern classes d1x, . . . , dr−1x respectively. Therefore, the stable tangent bundle of V 4k+2
d1,...,dr−1

is

isomorphic to (4k + r + 2)H − (Hd1 + · · · + Hdr−1). Note that V 4k+2
d1,...,dr−1

⊂ CP
4k+1+r is a submanifold representing

the Poincaré dual of d1 · · ·dr−1x
r−1. It is easy to check that the right hand side of Eq. (5) equals (all calculations are

in Z/2)

Â
(
V 4k+1

d1,...,dr

) = 2r−1
〈( x

2

sinh x
2

)4k+r+2

sinh

(
d1x

2

)
· · · sinh

(
dr−1x

2

)
exp

(
drx

2

)
,
[
CP

4k+1+r
]〉

= 1

24k+2

〈(
x

sinhx

)4k+r+2

sinh(d1x) · · · sinh(dr−1x) exp(drx),
[
CP

4k+1+r
]〉

. (6)

We use residue integral to calculate this integral, since what we are interested in is nothing but some coefficient in a
polynomial. We use Γ (0) (resp. Γ (1)) to denote a small circle around 0 (resp. 1).
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Â
(
V 4k+1

d1,...,dr

) = 2

2π
√−1

∮
Γ (0)

edr z

(ez − e−z)4k+r+2

r−1∏
i=1

(
ediz − e−diz

)
dz

= 2

2π
√−1

∮
Γ (0)

e(4k+r+1+dr )z

(e2z − 1)4k+r+2

r−1∏
i=1

(
ediz − e−diz

)
dez

= 2

2π
√−1

∮
Γ (1)

t4k+r+1+dr
∏r−1

i=1 (tdi − t−di )

(t2 − 1)4k+r+2
dt

= 1

2π
√−1

∮
Γ (1)

∑
t4k+r±d1±···±dr−1+dr

(t2 − 1)4k+r+2
dt2.

(7)

Since 4k + r + 2 − ∑
di is an even number, so there is no risk in writing this integral as:

Â
(
V 4k+1

d1,...,dr

) = 1

2π
√−1

∮
Γ (0)

∑
(w + 1)(4k+r±d1±···±dr−1+dr )/2

w4k+r+2
dw

=
∑(

(4k + r ± d1 ± · · · ± dr−1 + dr)/2

4k + r + 1

)
, (8)

here
(
n
m

) = n···(n−m+1)
m! and we sum over all the possibilities ±d1 ±· · ·±dr−1 +dr . Then by [10] the proof of assertion

(1.5) is complete.

Remark 2. One should note that the choice of dr is not important to the result because, for positive integer n,( n−1
2 +α
n

) ≡ ( n−1
2 +α)( n−1

2 +α−1)···( n−1
2 +α−n+1)

n! ≡ ( n−1
2 −α)···( n−1

2 −α−n+1)

n! ≡ ( n−1
2 −α
n

)
mod 2.
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