Some consequences of the Polynomial Freiman-Ruzsa Conjecture

Mei-Chu Chang
Department of Mathematics, University of California, Riverside, CA 92521, USA
Received 25 December 2008; accepted after revision 2 April 2009
Presented by Jean Bourgain

Abstract

Assuming the Weak Polynomial Freiman-Ruzsa Conjecture, we derive some consequences on sum-products and the growth of subsets of $S L_{3}(\mathbb{C})$. To cite this article: M.-C. Chang, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Quelques conséquences de la conjecture polynomiale de Freiman-Ruzsa. En supposant la conjecture polynomiale faible de Freiman-Ruzsa, on en déduit certaines conséquences sur les ensembles sommes-produits ainsi que sur la croissance de sousensembles de $S L_{3}(\mathbb{C})$. Pour citer cet article : M.-C. Chang, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit A un sous-ensemble fini d'un espace vectoriel V et notons $A+A=\{x+y: x, y \in A\}$ l'ensemble somme (de même, $n A=(n-1) A+A$). Un lemme dû à Freiman affirme que si $|A+A|<K|A|$ et $|A|>c K^{2}$, l'espace $\langle A\rangle$ engendré par A est de dimension inférieure à K.

La conjecture polynomiale faible de Freiman-Ruzsa (WPFRC) est l'énonçé suivant: Si A satisfait $|A+A|<K|A|$, il existe un sous-ensemble A_{1} de A tel que $\left|A_{1}\right|>K^{-c}|A|$ avec $A_{1} \subset \mathbb{Z} \xi_{1}+\cdots+\mathbb{Z} \xi_{d}, \xi_{i} \in V$ et $d<c \log K$ où c est une constante absolue.

Notons que WPFRC est une conséquence de la conjecture polynomiale de Freiman-Ruzsa (voir [9] pour la formulation de celle-ci). Dans cette Note, nous précisons quelques conséquence de WPFRC et un théorème profond de Evertse-Schlickewei-Schmidt [7] sur les relations linéaires dans un sous-groupe de \mathbb{C}^{*} de rang borné.

Théorème 1. Supposons WPFRC. Étant donné $n \in \mathbb{Z}_{+}$et $\varepsilon>0$, il existe $\delta>0$ tel que si $A \subset \mathbb{C}^{*}$ est un ensemble fini et $|A A|<|A|^{1+\delta}$ (en supposant $|A|$ suffisamment grand), on a $|n A|>|A|^{n(1-\varepsilon)}$.

On a également la propriété suivante pour la croissance d'ensembles finis dans un groupe linéaire :

[^0]Théorème 2. Supposons WPFRC. Si $A \subset S L_{3}(\mathbb{C})$ satisfait $|A A|<K|A|(|A|$ fini et suffisamment grand), il existe un sous-ensemble A^{\prime} de A tel que $\left|A^{\prime}\right|>K^{-c}|A|$ avec A^{\prime} contenu dans une classe d'un sous-groupe nilpotent (c est une constante absolue).

D'autre part nous mentionnons certains résultats plus faibles, qui ne dépendent pas de cette conjecture.

1. Notations

The n-fold sum set and the n-fold product set of A are $n A=A+\cdots+A=\left\{a_{1}+\cdots+a_{n}: a_{1}, \ldots, a_{n} \in A\right\}$ and $A^{n}=A \cdots A=\left\{a_{1} \cdots a_{n}: a_{i} \in A\right\}$ respectively. The inverse set A^{-1} can be defined similarly. Let further $A^{[n]}=$ $\left(\{1\} \cup A \cup A^{-1}\right)^{n}$. The notation A^{n} is also used for the n-fold Cartesian product, when there is no ambiguity.

2. Freiman's theorem and related conjectures

One way to formulate the Polynomial Freiman-Ruzsa Conjecture is as follows:
Let V be a \mathbb{Z}-module and $A \subset V$ a finite set satisfying

$$
\begin{equation*}
|A+A|<K|A| . \tag{1}
\end{equation*}
$$

Then there exist a positive integer $d \in \mathbb{Z}_{+}$, a subset $A_{1} \subset A$, a convex subset $B \subset \mathbb{R}^{d}$ and a group homomorphism $\phi: \mathbb{Z}^{d} \rightarrow V$ such that

$$
\begin{align*}
& d<c \log K, \tag{2}\\
& \left|A_{1}\right|>K^{-c}|A|, \tag{3}\\
& \phi\left(B \cap \mathbb{Z}^{d}\right) \supset A_{1}, \tag{4}\\
& \left|B \cap \mathbb{Z}^{d}\right|<K^{c}|A| . \tag{5}
\end{align*}
$$

Here c is an absolute constant.
Recall that if A satisfies (1) and $c K^{2}<|A|$, then $A \subset \phi\left(B \cap \mathbb{Z}^{d}\right)$ with $d \leqslant K$ and $B \subset \mathbb{R}^{d}$ a box satisfying $|B|<\exp \left(c K^{2} \log ^{3} K\right)|A|$. (Quantitative version of Freiman's theorem from [4].)

More relevant in this note is the much simpler Freiman Lemma, stating that if (1) holds and $|A|>c K^{2} / \varepsilon$, then $A \subset \phi\left(\mathbb{Z}^{d}\right)$ with $d \leqslant[K-1+\varepsilon]$.

The Polynomial Freiman-Ruzsa Conjecture implies, in particular, the following weaker conjecture, which is all we will use:

Weak Polynomial Freiman-Ruzsa Conjecture (WPFRC): If $A \subset V$ satisfies $|A+A|<K|A|$, then there exist a subset $A_{1} \subset A$ with $\left|A_{1}\right|>K^{-c}|A|$, and elements $\xi_{1}, \ldots, \xi_{d} \in V$ with $d<c \log K$, so that $A_{1} \subset \mathbb{Z} \xi_{1}+\cdots+$ $\mathbb{Z} \xi_{d}$, where c is an absolute constant.

Note that if $A \subset \mathbb{R}_{+}$is finite satisfying

$$
\begin{equation*}
|A A|<K|A| \tag{6}
\end{equation*}
$$

and considering the set $\log A \subset \mathbb{R}=: V$, one would derive that there are elements $\eta_{1}, \ldots, \eta_{d} \in \mathbb{R}^{*}$ with $d<c \log K$ such that

$$
\begin{equation*}
|A \cap G|>K^{-c}|A|, \tag{7}
\end{equation*}
$$

where $G<\mathbb{R}^{*}$ denotes the multiplicative group generated by $\eta_{1}, \ldots, \eta_{d}$.
The analogous statement would hold equally well for a finite subset $A \subset \mathbb{C}^{*}$ satisfying (6).

3. Sets with small product sets

We recall the deep theorem of Evertse-Schlickewei-Schmidt ([7], Theorem 1.1) on linear equations in multiplicative groups:

Theorem ESS. Let Γ be a subgroup of the multiplicative group $\left(\mathbb{C}^{*}\right)^{n}$ of rank r and let $a_{1}, \ldots, a_{n} \in \mathbb{C}^{*}$. Then the equation

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { with }\left(x_{1}, \ldots, x_{n}\right) \in \Gamma \tag{8}
\end{equation*}
$$

has at most

$$
\begin{equation*}
\exp \left((6 n)^{3 n}(r+1)\right) \tag{9}
\end{equation*}
$$

non-degenerate solutions, meaning that no proper subsum of $a_{1} x_{1}+\cdots+a_{n} x_{n}$ vanishes.
The precise bound (9) is very important for our purpose.
Let $G<\mathbb{C}^{*}$ be a group generated by d elements $\eta_{1}, \ldots, \eta_{d}$ with $d<c \log K$, and let $\Gamma=G^{n}$. Since Γ is generated by the elements $\left(1, \ldots, \eta_{i}, \ldots, 1\right)$, we have $r:=\operatorname{rank} \Gamma \leqslant n d$. Therefore, given $a_{1}, \ldots, a_{n} \in \mathbb{C}^{*}$, the equation $a_{1} x_{1}+$ $\cdots+a_{n} x_{n}=1$ with $x_{1}, \ldots, x_{n} \in G$ has at most

$$
\begin{equation*}
\exp \left((6 n)^{3 n}(n d+1)\right)<\exp \left(c n(6 n)^{3 n} \log K\right)=K^{C(n)} \tag{10}
\end{equation*}
$$

non-degenerate solutions, where $C(n)$ is a constant depending on n.
For $S_{1}, \ldots, S_{n} \subset \mathbb{C}$, we denote the additive energy of S_{1}, \ldots, S_{n} by

$$
E\left(S_{1}, \ldots, S_{n}\right)=\left|\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \in S_{1}^{2} \times \cdots \times S_{n}^{2}: x_{1}+\cdots+x_{n}=y_{1}+\cdots+y_{n}\right\}\right| .
$$

Recall the following lower bound on the size of the sum-set $S_{1}+\cdots+S_{n}$:

$$
\begin{equation*}
\left|S_{1}+\cdots+S_{n}\right| \geqslant \frac{\left|S_{1}\right|^{2} \ldots\left|S_{n}\right|^{2}}{E\left(S_{1}, \ldots, S_{n}\right)} \tag{11}
\end{equation*}
$$

Corollary 1. Let $G<\mathbb{C}^{*}$ be a group generated by d elements with $d<c \log K$ and let $A_{1} \subset G$ be finite. Then

$$
\begin{equation*}
E(\underbrace{A_{1}, \ldots, A_{1}}_{n}) \leqslant K^{C(n)}\left|A_{1}\right|^{n-1}+\frac{(2 n)!}{n!}\left|A_{1}\right|^{n}, \tag{12}
\end{equation*}
$$

where $C(n)$ is a constant depending on n.
Proof. Consider the equation

$$
\begin{equation*}
x_{1}+\cdots+x_{n}-x_{n+1}-\cdots-x_{2 n}=0, \quad x_{i} \in A_{1} . \tag{13}
\end{equation*}
$$

We decompose (13) in minimal vanishing subsums. Each decomposition corresponds to a partition

$$
\begin{equation*}
\{1, \ldots, 2 n\}=\bigcup_{\alpha=1}^{\beta} E_{\alpha} \tag{14}
\end{equation*}
$$

Since $\left|E_{\alpha}\right| \geqslant 2$, we have $\beta \leqslant n$. The case $\beta=n$ clearly contributes to the last term in (12). If $\left|E_{\alpha}\right| \geqslant 3$, we rewrite the equation

$$
\begin{equation*}
\sum_{i \in E_{\alpha}} \pm x_{i}=0 \tag{15}
\end{equation*}
$$

as

$$
\begin{equation*}
\sum_{i \in E_{\alpha} \backslash\left\{r_{1}\right\}} \pm \frac{x_{i}}{x_{r_{1}}}=1 \tag{16}
\end{equation*}
$$

(Specify some element $r_{1} \in E_{\alpha}$.) Since no subsum of (15), (16) is assumed to vanish, the estimate (10) in Theorem ESS applies for the number of non-degenerate solutions of

$$
\begin{equation*}
\sum_{i \in E_{\alpha} \backslash\left\{r_{1}\right\}} \pm \frac{z_{i}}{z_{r_{1}}}=1 \quad \text { with } z_{i} \in G \text {. } \tag{17}
\end{equation*}
$$

Therefore (15) has at most $K^{C\left(\left|E_{\alpha}\right|\right)}\left|A_{1}\right|$ non-degenerate solutions. It follows that the number of solutions of (13) corresponding to the partition (14) is bounded by $\left|A_{1}\right|^{\beta} \prod_{\alpha=1}^{\beta} K^{C\left(\left|E_{\alpha}\right|\right)}$, where $\beta \leqslant n-1$. Summing over all possible partitions, we prove (12).

The next corollary is conditional to the Weak Polynomial Freiman-Ruzsa Conjecture.
Corollary 2. Assume WPFRC. Given $n \in \mathbb{Z}_{+}$and $\varepsilon>0$, there is $\delta>0$ such that if $A \subset \mathbb{C}^{*}$ is finite with $|A|$ large and

$$
\begin{equation*}
|A A|<|A|^{1+\delta} \tag{18}
\end{equation*}
$$

then the n-fold sumset $n A$ satisfies $|n A|>|A|^{n(1-\varepsilon)}$.
Proof. Take $K=|A|^{\delta}$ in (6). WPFRC, Corollary 1 (letting $A_{1}=A \cap G$ in (7)), and (11) imply

$$
\begin{align*}
|n A| \geqslant\left|n A_{1}\right| & \geqslant \frac{\left|A_{1}\right|^{2 n}}{K^{C(n)}\left|A_{1}\right|^{n-1}+\frac{(2 n)!}{n!}\left|A_{1}\right|^{n}} \\
& >\min \left(\frac{n!}{(2 n)!}\left|A_{1}\right|^{n}, K^{-C(n)}\left|A_{1}\right|^{n+1}\right) \\
& >\min \left(\frac{n!}{(2 n)!} K^{-c_{1} n}|A|^{n}, K^{-C(n)}|A|^{n+1}\right) \tag{19}
\end{align*}
$$

Note that one has the following stronger conclusion:
Corollary 3. Assume WPFRC. Given $n \in \mathbb{Z}_{+}$and $\varepsilon>0$, there is $\delta>0$ such that if $A \subset \mathbb{C}^{*}$ is a sufficiently large finite set satisfying (18) and $B \subset A$ is any subset such that $|B|>|A|^{\varepsilon}$, then $|n B|>|B|^{n(1-\varepsilon)}$.

Proof. As in the proof of Corollary 2, we start from $A_{1}=A \cap G$ satisfying (7). Let z_{1}, \ldots, z_{s} be a maximal subset of A such that $z_{i} A_{1} \cap z_{j} A_{1}=\emptyset$ for any $i \neq j$. Hence

$$
\begin{equation*}
s \leqslant \frac{\left|A A_{1}\right|}{\left|A_{1}\right|} \leqslant K^{c} \frac{|A A|}{|A|}<K^{c+1} \tag{20}
\end{equation*}
$$

and by construction, if $z \in A$, then $z A_{1} \cap z_{i} A_{1} \neq \emptyset$ for some $1 \leqslant i \leqslant s$. Therefore, $A \subset \bigcup_{i=1}^{s} z_{i} A_{1} A_{1}^{-1}$ and $B \subset$ $\bigcup_{i=1}^{s}\left(B \cap z_{i} A_{1} A_{1}^{-1}\right)$.

Hence there is $1 \leqslant i \leqslant s$ such that $\left|B_{1}:=B \cap z_{i} A_{1} A_{1}^{-1}\right| \geqslant|B| / s$.
Note that since $A_{1} A_{1}^{-1} \subset G$, Corollary 1 remains valid for $z_{i}^{-1} B_{1} \subset A_{1} A_{1}^{-1}$. In (19) A, A_{1} are replaced by B, B_{1}. (Note also that $\left|z_{i}^{-1} B_{1}\right|=\left|B_{1}\right|$, etc.)

There are various weaker forms of Corollary 2 and Corollary 3 that hold unconditionally. The following is a version of Corollary 2 :

Proposition 4. Given $m>1$, there is $\delta>0$ and $n \in \mathbb{Z}_{+}$such that if $A \subset \mathbb{C}^{*}$ is a sufficiently large finite set satisfying

$$
\begin{equation*}
|A A|<|A|^{1+\delta} \tag{21}
\end{equation*}
$$

then $|n A|>|A|^{m}$.
Using the terminology in [9], a set A satisfying (21) is called an approximate multiplicative group. It was shown in [1] (see also [9], Theorem 2.60) that given $H \neq \emptyset$ in \mathbb{F}_{p} with $|H H| \leqslant K|H|$, and $m>1, \varepsilon>0$, there is an integer $n=n(m, \varepsilon) \in \mathbb{Z}_{+}$such that $|n H|>c(m, \varepsilon) K^{-C(m, \varepsilon)} \min \left(|H|^{m}, p^{1-\varepsilon}\right)$.

For $A \subset \mathbb{C}^{*}$, the same argument allows to show that $|n A|>c(m, \varepsilon) K^{-C(m, \varepsilon)}|A|^{m}$ and hence the proposition holds.
Regarding Corollary 3, there is the result from [2] for finite subsets $A \subset \mathbb{Z}$ and generalized in [3] for sets A of algebraic numbers of bounded degree.

Proposition 5. Given $d, n \in \mathbb{Z}_{+}$and $\varepsilon>0$, there is $\delta>0$ such that the following holds: Let $A \subset \mathbb{C}^{*}$ be a sufficiently large finite set of algebraic numbers of degree at most d. Assume $|A A|<|A|^{1+\delta}$. Then, for any nonempty subset $B \subset A,|n B|>|A|^{-\varepsilon}|B|^{n}$.

Note that in this proposition we do not require all elements of A to be contained in the same extension of \mathbb{Q} of bounded degree. This bounded degree hypothesis is removed because of WPFRC.

4. Finite subsets of linear groups

We recall the following theorem from [5,6]:
For all $\varepsilon>0$, there is $\delta>0$ such that if $A \subset S L_{3}(\mathbb{Z})$ is a finite set, then one of the following alternatives holds:
(i) A intersects a coset of a nilpotent subgroup in a set of size at least $|A|^{1-\varepsilon}$.
(ii) $\left|A^{2}\right|>|A|^{1+\delta}$.

The proof makes essential use of Theorem ESS, applied with Γ the unit group of the extension of a cubic polynomial over \mathbb{Q}. This is the only significant place where a generalization to subset $A \subset S L_{3}(\mathbb{C})$ is problematic. Here we will discuss in some greater detail how the WPFRC allows us to recover the theorem in its full strength for subsets $A \subset S L_{3}(\mathbb{C})$.

Theorem 6. Assume WPFRC. Given a finite subset $A \subset S L_{3}(\mathbb{C})$ satisfying

$$
\begin{equation*}
|A A|<K|A|, \tag{22}
\end{equation*}
$$

then there is a subset $A^{\prime} \subset A$ such that

$$
\begin{equation*}
\left|A^{\prime}\right|>K^{-c}|A| \tag{23}
\end{equation*}
$$

and A^{\prime} is contained in a coset of a nilpotent group.
Proof. An initial key step in [5] (borrowed from Helfgott's work [8]) is to construct a set $D \subset A^{-1} A$ of commuting elements, where

$$
\begin{equation*}
|D|>K^{-C}|A|^{\theta} \tag{24}
\end{equation*}
$$

with C, θ absolute constants. This step is completely general and applies equally well to subsets $A \subset S L_{d}(\mathbb{C})$ with $\theta=\theta(d)$. Change of bases permits simultaneous diagonalization of the elements of D. They form the key ingredient in the amplification.

Going back to (22), one applies first Tao's non-commutative version of the Balog-Szemerédi-Gowers Lemma (see [9]) and replaces A by a subset $A_{1} \subset A$ satisfying that

$$
\begin{equation*}
\left|A_{1}\right|>K^{-c}|A| \tag{25}
\end{equation*}
$$

and A_{1} is an approximate group, i.e. there is a subset $X \subset S L_{3}(\mathbb{C})$ such that

$$
\begin{equation*}
|X|<K^{c} \quad \text { and } \quad A_{1} A_{1} \subset X A_{1} \cap A_{1} X, \tag{26}
\end{equation*}
$$

where c is an absolute constant.
Identifying A and A_{1} and using (26), one can control the size of all product sets

$$
\begin{equation*}
\left|A^{[s]}\right|<K^{c s}|A| \tag{27}
\end{equation*}
$$

for given $s \in \mathbb{Z}^{*}$.
Let $D \subset A^{-1} A \subset A^{[2]}$ be the diagonal set obtained above, satisfying (24). The next aim is to ensure that D has small multiplicative doubling.

Denote the set of diagonal matrices over \mathbb{C} by \mathcal{D} and let $D_{s}=\mathcal{D} \cap A^{[s]}$ for $s \geqslant 2$. Hence $D_{s} \supset D_{2} \supset D$ satisfies (24). Consider a minimal subset $B \subset A^{[2]}$ satisfying
$A^{[2]} \subset B \mathcal{D}$.

It follows that

$$
\begin{equation*}
g \mathcal{D} \cap g^{\prime} \mathcal{D}=\emptyset, \quad \forall g \neq g^{\prime} \in B \tag{29}
\end{equation*}
$$

and also

$$
A^{[2]} \subset B D_{4}
$$

Therefore, $|A| \leqslant\left|A^{[2]}\right| \leqslant|B|\left|D_{4}\right|$. Also, $D_{4} D_{4} \subset D_{8}$ and by (29) and (27)

$$
\begin{equation*}
\left|D_{8}\right||B|=\left|D_{8} B\right| \leqslant\left|A^{[10]}\right|<K^{10 c}|A| \tag{30}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\left|D_{4} D_{4}\right| \leqslant\left|D_{8}\right| \leqslant K^{10 c} \frac{|A|}{|B|} \leqslant K^{10 c}\left|D_{4}\right| \tag{31}
\end{equation*}
$$

Replacing D by D_{4}, we obtain a subset of diagonal matrices in $A^{[4]}$ satisfying (24) and

$$
\begin{equation*}
|D D|<K^{c}|D| \tag{32}
\end{equation*}
$$

This proves Theorem 6.
Lemma 7. Let $A \subset A^{\prime} \times R$ be finite and let $\pi: A \rightarrow A^{\prime}$ be the projection to the first coordinate. Assume $|2 A|=$ $|A+A|<K|A|$. Then there exist $C \subset A$ such that $|C|>\frac{1}{2 \log K}|A|$ and for every $x \in C,\left|\pi^{-1}(\pi(x))\right| \sim h$ for some h.

Remarks. 1. We expect that generalization of the theorem to subsets $A \subset S L_{d}(\mathbb{Z})$, with d arbitrary, is only a technical matter.
2. It may be possible to reach the conclusion of Theorem 6 unconditionally by following the approach in [8].
3. Statements of this type have been suggested by B. Green.

References

[1] J. Bourgain, Estimates on exponential sums related to Diffie-Hellman distributions, GAFA 15 (1) (2005) 1-34.
[2] J. Bourgain, M.-C. Chang, On the size of k-fold sum and product sets of integers, JAMS 17 (2) (2004) 473-497.
[3] J. Bourgain, M.-C. Chang, Sum-product theorems in algebraic number fields, Journal d'Analyse Mathematique, in press.
[4] M.-C. Chang, A polynomial bound in Freiman's Theorem, Duke Math. J. 113 (3) (2002) 399-419.
[5] M.-C. Chang, Product theorems in SL2 and SL3, J. Math. Jussieu 7 (1) (2008) 1-25.
[6] M.-C. Chang, On product sets in $S L_{2}$ and $S L_{3}$, preprint.
[7] J.-H. Evertse, H. Schlickewei, W. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. Math. 155 (2002) $807-836$.
[8] H. Helfgott, Growth and generation in $S L_{3}\left(\mathbb{Z} / \mathbb{Z}_{p}\right)$, preprint, 2008.
[9] T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2006.

[^0]: E-mail address: mcc@math.ucr.edu.

