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Abstract

There is a correspondence between the set of functions in the maximal ideal of the local ring of a rational surface singularity ξ

and the set E +(E) consisting of certain effective divisors supported on the exceptional fiber E of a resolution of the singularity.
Given an element Y ∈ E +(E) and a non-Tjurina component N of Y , we verify a formula for the least element of the set of divisors
X ∈ E +(E) greater than or equal to Y + N stated but not proved in Tosun (1999). To cite this article: S. Altınok, C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur un analogue du théorème de Pinkham pour les composantes des singularités rationnelles qui ne sont pas Tjurina.
Il existe une correspondance entre l’ensemble des fonctions de l’idéal maximal de l’anneau local en une singularité rationnelle ξ

d’une surface et un ensemble E +(E) de diviseurs effectifs portés par la fibre exceptionnelle E d’une résolution de cette singularité.
Étant donné un élément Y ∈ E +(E) et une composante N de Y qui n’est pas Tjurina, nous établissons une formule donnant le plus
petit élément de l’ensemble des diviseurs X ∈ E +(E) supérieur ou égal à Y +N , indiquée mais non démontrée dans Tosun (1999).
Pour citer cet article : S. Altınok, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (X, ξ) be a germ of a normal analytic surface embedded in C
n having a rational singularity at ξ . Such a singular-

ity is called rational if H 1(X̃, OX) = 0, where π : X̃ → X is any resolution of X at ξ . Since there is a correspondence
between analytic functions on X and certain positive divisors supported on the exceptional fiber of a resolution of
the singularity (see [2] or [5]), the study of such divisors is useful in order to obtain information about the structure
of analytic functions. These divisors can be used to calculate certain topological invariants such as Seiberg–Witten
invariants of the plumbed manifold corresponding to a singularity (see [6]), also to read the open book structure of
this manifold (see [3,1]).
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The main result of this paper is a verification of a formula for the least element of the set of divisors X ∈ E +(E)

greater than or equal to Y + N for a given Y ∈ E +(E) and a non-Tjurina component N of Y (see Theorem 2.5).
This formula was stated in [8] but no proof has been given. In the Tjurina case the corresponding formula is given
by Pinkham (see Theorem 2.3). It follows that starting with the fundamental cycle of E any element D ∈ E +(E)

can be obtained by applying iteratively Pinkham’s theorem and Theorem 2.5. It is important to observe that the two
operations in this process are necessary. Related definitions and notations are given below.

2. Constructing elements of semigroup E+(E)

Let (X, ξ) be a germ of a normal complex analytic surface having a singularity at ξ . For a fixed resolution
π : X̃ → X of the singularity (X, ξ) the exceptional fiber E = π−1(x) is connected and of dimension 1. Let E = ⋃

Ei

where E1, . . . ,En are the irreducible components of E.
Let E +(E) be the set of non-zero effective divisors Y = ∑n

i=0 aiEi such that Y · Ei � 0 for all i. This set is non-
empty (see Zariski [9]). It is also a semigroup under addition: D1 +D2 = ∑n

i=0(ni +mi)Ei where D1 = ∑
niEi and

D2 = ∑
miEi ∈ E +(E). Since E is connected, ai � 1 for all i = 1, . . . , n.

For a given Y = ∑n
i=1 aiEi ∈ E +(E) we define the multiplicity of Ei in Y as the coefficient ai of Ei in Y and

denote it by multY Ei . There is a partial ordering on E +(E) defined by Y � Y ′ if multY Ei � multY ′ Ei for all i. For
any Y,Y ′ ∈ E +(E) we can define min(Y,Y ′) = ∑

min(ai, a
′
i )Ei , which is again in E +(E). Therefore, there exists the

absolutely minimal effective cycle in E +(E), called the fundamental cycle Z of E. It can be determined by Laufer’s
algorithm (see Laufer [4]). This algorithm may be extended in the following way:

Lemma 2.1. Let X be an effective cycle supported on E. There is a cycle Z1 � X such that Z1 ∈ E +(E). The smallest
element in E +(E) greater than or equal to X is given by Laufer’s algorithm.

Proof. Let Z = ∑
aiEi be the fundamental cycle and X = ∑

biEi an effective cycle. There exists n ∈ N such that
X � nZ. Since nZ ∈ E +(E), this proves the first part of the lemma. Denote by Y the absolute minimum of the set of
elements E +(E) greater than or equal to X.

For the construction of Y , we start with the effective cycle X and, assuming that X /∈ E +(E), add to it any irre-
ducible component Ei0 such that X · Ei0 > 0. Setting X1 = X + Ei0 , one shows that X1 � Y . Iterating this step we
construct a sequence X1,X2, . . . of effective cycles supported by E such that if there is an irreducible component Eij

for which Xj · Eij > 0 we set Xj+1 = Xj + Eij . Eventually, we stop when Xl · Ej � 0 for all j . This process is
finite because we necessarily have Xj � Y for all j . By definition, we have also Y � Xl , therefore Xl = Y . Hence
Xl ∈ E +(E) is the smallest one. �

From now on, we assume that the singularity is rational.

Definition 2.2. A Tjurina component of Y ∈ E +(E) is a maximal connected set T of irreducible components of E

such that Y ·Ei = 0 for all irreducible components Ei in T . Non-Tjurina components of Y are irreducible components
Ei of E such that Y · Ei < 0.

We let X = Y + Ei , where Y ∈ E +(E) and Ei is any irreducible component of E. Our aim is to find out combi-
natorially what the least element Z1 in Lemma 2.1 should be. We can divide the problem in two parts. First, if Ei is
contained in a Tjurina component of Y then this question is answered by Pinkham (see Theorem 2.3). Second, if Ei

is a non-Tjurina component of Y we answer it in Theorem 2.5.

Theorem 2.3 (Pinkham’s Theorem [7]). Let Ei be an irreducible component of E which is contained in a Tjurina
component T of Z. Then the least element D � Z+Ei of E +(E) is equal to Z+Z(T ), where Z(T ) is the fundamental
cycle of T .

We note that Pinkham’s theorem still holds if the fundamental cycle Z is replaced by any Y ∈ E +(E).

Definition 2.4. Let us denote by T a Tjurina component of Y ∈ E +(E) and by C an irreducible component of E

which is contained in T . Let T 0 = T and Z(T 0) be the fundamental cycle of T 0. If Z(T 0) · C < 0 then define the
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depth of C in T 0 to be 0. If Z(T 0) · C = 0, then let T 1 denote the Tjurina component of Z(T 0) which contains C.
In this way, one can form a finite chain T l ⊂ T l−1 ⊂ · · · ⊂ T 1 ⊂ T 0 such that T i is the Tjurina component of the
fundamental cycle Z(T i−1) containing C for i = 1, . . . , l, where Z(T 0) ·C = Z(T 1) ·C = · · · = Z(T l−1) ·C = 0 and
Z(T l) · C < 0. The length of this chain, l, is called the desingularization depth of C and is denoted by depthT C.

Theorem 2.5. Let F be a non-Tjurina component of Y ∈ E +(E) attached to Tjurina components Ti for i = 1, . . . , q

and Ci the unique irreducible component of Ti such that Ci ∩F �= ∅. Let AF = {D ∈ E + | D � Y +F }. Then the least
element in AF is given by

Y + F +
q∑

i=1

li∑
j=0

Z
(
T

j
i

)

where li = depthTi
Ci . In particular, if F is a non-Tjurina component of Y not attached to any Tjurina ones then the

least element of AF is Y + F .

To prove Theorem 2.5 we need the following lemma:

Lemma 2.6. Let F be a non-Tjurina component of Z. Let denote by T1, . . . , Tr the Tjurina components of Z and by
C1, . . . ,Cr the irreducible components of T1, . . . , Tr respectively such that Ct ∩ F �= ∅ for all t where t = 1, . . . , r .
Then

(r − 1) +
∑

depthTi
Ci � −F 2.

Proof. We will only prove this lemma for r = 1. The proof can easily be generalized for any r . So, let T = T1 be the
unique Tjurina component attached to F . Start with Z0 = F and apply Laufer’s algorithm within T1 to get a sequence
Z0,Z1 = F + C1, . . . ,Zt0 = F + Z(T ) for some t0 > 0. Either Z(T ) · C1 is equal to zero or less than zero. If it
is zero, then apply Laufer’s algorithm within the Tjurina component T 1 of Z(T ) containing C1 to get a sequence
Zt0,Zt0+1 = Zt0 +C1, . . . ,Zt1 = Zt0 +Z(T 1) for some t1 > t0. If Z(T 1) ·C1 = 0, then we repeat the process to reach
Zt2 = Zt1 + Z(T 2) for some t2 > t1, where T 2 is the Tjurina component of Z(T 1) containing C1. Continuing in this
way we will eventually obtain Ztl = F + Z(T 0) + Z(T 1) + Z(T 2) + · · · + Z(T l) for some tl > tl−1, where T 0 = T

and by induction T l is the Tjurina component of Z(T l−1) which contains C1 and C1 is the non-Tjurina component of
Z(T l). Then Ztl · F = F 2 + (l + 1) � 1 by Laufer’s algorithm. This implies that l � −F 2, where l = depthT C1. �
Proof of Theorem 2.5. The proof is given for the case q = 1. The general case is similar. Let F be a non-Tjurina
component of Y ∈ E + attached to a single Tjurina component T and C1 be the unique irreducible component of T such
that C1 ∩ F �= ∅. We will prove that the least element in AF is given by Y + F + ∑l1

i=0 Z(T i), where l1 = depthT C1.

Let us denote Y + F + Z by Y where Z = ∑l1
i=0 Z(T i). We divide the proof into two parts. The first part is to

prove that Y ∈ E +. The second part is to show that every element of AF contains Y .
For the first part, we check via a case-by-case analysis that Y · C � 0 for all irreducible components C of E.

Case (a) C = F . By Lemma 2.6 together with Y · F < 0, we have Y · F = Y · F + F 2 + (l1 + 1) � 0.
Case (b) C = C1. By definition of the desingularization depth of C1 together with Y ·C1 = 0 and F ·C1 = 1, we have

Y · C1 = Y · C1 + F · C1 + ∑l1
i=0 Z(T i) · C1 � 0.

Case (c) C is contained in T and F · C = 0. It is sufficient to prove that
∑l1

i=0 Z(T i) · C � 0. We find the first
index l, if there exists, such that Z(T l) · C < 0. This implies that C /∈ Z(T l+1). Hence Z(T l+1) · C = 0
or 1. If Z(T l+1) · C = 0 then Z(T i) · C = 0 for i = l + 2, . . . , l1. Therefore, Z · C < 0. Now we assume that
Z(T l+1) · C = 1. We consider the subtree F ∪ Z(T l+1) ∪ C of Γ , the dual graph of E, and apply Laufer’s
algorithm to get a sequence:

Z0 = F,Z1 = F + C1, . . . ,Zt = F + Z(T l+1) + · · · + Z(T l1),Zt+1 = Zt + C

where Zt ·C � 1. This gives that
∑l1

i=l+1 Z(T i) ·C � 1. Hence Y ·C = (Y +F +∑l−1
i=0 Z(T i)) ·C +Z(T l) ·

C + (
∑l1 Z(T i)) · C � 0.
i=l+1
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Case (d) C is not contained in T and C ∩ T = ∅. Hence
∑l1

i=0 Z(T i) · C = 0. If F · C = 1 then C is non-Tjurina and

hence Y · C = Y · C + F · C � 0. If F · C = 0 then Y · C = Y · C � 0.
Case (e) C is not contained in T and C ∩ T �= ∅. This implies that there is an i such that Ci ∈ T and Ci · C = 1,

Y · C < 0 and F · C = 0. Now, we can consider the subtree F ∪ T ∪ C of Γ and apply Laufer’s algorithm in
order to get a sequence:

Z0 = F,Z1 = F + C1, . . . ,Zt = F +
l1∑

j=0

Z(T j ),Zt+1 = Zt + C,

where Zt · C � 1. Since Y · C < 0 and Zt = Z, we have Y · C = (Y + Zt) · C � 0.

For the second part, by Laufer’s algorithm any D in AF contains Y + F + C1 and hence also Y + F +∑l1
i=0 Z(T i). �
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