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Abstract

Using isoperimetry we obtain new symmetrization inequalities that allow us to provide a unified framework to study Sobolev
inequalities in metric spaces. The applications include concentration inequalities, Poincaré inequalities, as well as metric versions
of the Pólya–Szegö and Faber–Krahn principles. To cite this article: J. Martín, M. Milman, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Isopérimétrie et symetrisation dans des espaces de Sobolev sur les espaces métriques. En utilisant l’isopérimétrie nous
obtenons des nouvelles inégalités de symetrisation qui nous permettent de fournir un cadre unifié pour étudier des inégalités
de Sobolev dans des espaces métriques. Les applications incluent des inégalités de concentration, inégalités de Poincaré, et des
versions métriques des principes de Pólya–Szegö et de Faber–Krahn. Pour citer cet article : J. Martín, M. Milman, C. R. Acad.
Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This is a follow up to our recent work [10], where we obtained new symmetrization inequalities for Sobolev
functions that compare the rearrangement of a function with the rearrangement of its gradient, and incorporate in their
formulation the isoperimetric profile (cf. (1) below). These inequalities imply in a straightforward fashion functional
inequalities for very general rearrangement invariant norms or quasi-norms (e.g. Lp, Orlicz, Lorentz, Marcinkiewicz
spaces). One remarkable characteristic of these inequalities is that they preserve their form as we move from one
measure space to another, the only thing that changes are the corresponding isoperimetric profiles. As a consequence
we were able to provide a unified framework to study the classical Sobolev–Poincaré inequalities, logarithmic Sobolev
inequalities, as well as concentration inequalities (cf. [9] and the references therein). Importantly, if the isoperimetric
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profile does not depend on the dimension (like in the Gaussian case) then the corresponding inequalities are dimension
free.

The purpose of this note is to outline the modifications that are necessary to extend our earlier results to the setting
of metric spaces. Indeed, under relatively weak assumptions, all the tools that we need are available in the metric
setting (cf. [4]), and our methods can be readily adapted to provide an almost painless extension. In particular, the
results of this note, when combined with the method developed1 in [10], produce concentration inequalities in metric
spaces, as well as a Sobolev metric space version of the Pólya–Szegö principle; while our results combined with the
method of [[8], Theorem 3] imply metric Faber–Krahn inequalities.

Let (Ω,d,μ) be a metric space equipped with a separable Borel probability measure μ. For measurable functions
u :Ω → R, the distribution function of u is given by λu(t) = μ({x ∈ Ω: |f (x)| > t} (t > 0), the decreasing rearrange-
ment u∗ of u is defined, as usual, by u∗(s) = inf{t � 0: λu(t) � s} (t ∈ (0,1)]), and we let u∗∗(t) = 1

t

∫ t

0 u∗(s)ds.

For A ⊂ Ω, a Borel set, let Per(A) = lim infε→0
μ(Aε,d )−μ(A)

ε
, where Aε,d = {x ∈ Ω: ∃y ∈ A d(x, y) < ε} denotes

the ε-extension of A with respect to the metric d. An isoperimetric inequality measures the relation between Per(A)

and μ(A) by means of the isoperimetric profile I = I(Ω;d;μ), which is defined as the pointwise maximal function
I : [0,1] → [0,∞), such that Per(A) � I (μ(A)), for all Borel sets A. Finally, in this setting for a given Lips-
chitz function f (we shall write in what follows f ∈ Lip(Ω)) the modulus of the gradient is defined, as usual, by
|∇f (x)| = lim supd(x,y)→0

|f (x)−f (y)|
d(x,y)

.

2. Main results

Theorem 2.1. Suppose that the isoperimetric profile I is concave, continuous, increasing on (0,1/2) and symmetric
about the point 1/2. Then the following statements hold2 (and in fact are equivalent):

(i): ∀f ∈ Lip(Ω),

∞∫
0

I
(
λf (s)

)
ds �

∫
Ω

∣∣∇f (x)
∣∣dμ(x) (Ledoux).

(ii): ∀f ∈ Lip(Ω),
(−f ∗)′

(s)I (s) � d

ds

∫
{|f |>f ∗(s)}

∣∣∇f (x)
∣∣dμ(x) (Talenti–Maz’ya).

(iii): ∀f ∈ Lip(Ω),

t∫
0

((−f ∗)′
(·)I (·))∗

(s)ds �
t∫

0

|∇f |∗(s)ds (Pólya–Szegö).

(The second rearrangement on the left-hand side is with respect to the Lebesgue measure.)

(iv): ∀f ∈ Lip(Ω),
(
f ∗∗(t) − f ∗(t)

)
� t

I (t)
|∇f |∗∗(t). (1)

Given any rearrangement invariant space3 X(Ω), it follows readily from (1) that for all Lip functions, we have

‖f ‖LS(X) :=
∥∥∥∥(

f ∗∗(t) − f ∗(t)
)I (t)

t

∥∥∥∥
X̄

� ‖∇f ‖X. (2)

Remark 1. For L1 norms these Poincaré inequalities are a simple variant of Ledoux’s inequality (i). Indeed, let mf

be a median4 of f , then it is easy to see that

1 Our method builds on a variant of Maz’ya’s truncation principle, combined with the relevant isoperimetric inequalities, the co-area formula and
classical arguments from real interpolation theory (cf. Calderón [7]). We call this method to obtain symmetrization inequalities “symmetrization
via truncation”.

2 except where indicated all rearrangements are with respect to the measure μ.
3 A Banach lattice of functions X(Ω) is called a rearrangement invariant (r.i.) space (cf. [2]) if g ∈ X(Ω) implies that all functions f with the

same decreasing rearrangement, f ∗ = g∗, also belong to X(Ω), and, moreover, ‖f ‖X(Ω) = ‖g‖X(Ω) . There is an essentially unique r.i. space
X̄(0,1) of functions on the interval (0,1) consisting of all g : (0,1) → R such that g∗(t) = f ∗(t) for some function f ∈ X(Ω).

4 i.e. μ(f � m) � 1/2 and μ(f � m) � 1/2.
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∫
Ω

|f − mf |dμ � 1

2I (1/2)

∫
Ω

∣∣∇f (x)
∣∣dμ(x). (3)

The novelty of our inequalities, and the corresponding associated spaces LS(X), is that they incorporate the isoperi-
metric profiles associated with the geometry in question. These spaces are not necessarily normed, although often they
are equivalent to normed spaces (cf. [14]), and, in the classical cases, lead to optimal Sobolev–Poincaré inequalities
(cf. [12,10,11] and the references therein).

We now investigate the optimality of the Poincaré type inequality (2). The following result is new in the context of
r.i. spaces.

Theorem 2.2. Let (Ω,μ) = (Rn,μ⊗n
r ), with μr(x) = ϕ(x)dx, Iμ⊗n

r
(t) ≈ ϕ(F−1(t)), t ∈ [0,1], where F−1 is the

inverse of the distribution function associated to the density ϕ(x)dx5 spaces. Then, the following statements are
equivalent

(i): ∀f ∈ Lip(Ω),

∥∥∥∥f −
∫

f

∥∥∥∥
Y

� ‖∇f ‖X.

(ii):

∥∥∥∥∥
1∫

t

f (s)
ds

I (s)

∥∥∥∥∥
Ȳ

� ‖f ‖X̄, ∀0 � f ∈ X̄, with supp(f ) ⊂ (0,1/2). (4)

Moreover,

(a) If the operator QIf (f ) = I (t)
t

∫ 1
t

f (s) ds
I (s)

is bounded from X̄ to X̄, then the next inequality can be added to the
list of equivalences

(iii): ‖f ‖Ȳ �
∥∥∥∥f ∗(t) I (t)

t

∥∥∥∥
X̄

. (5)

(b) On the other hand if QI is not bounded from X̄ to X̄, but ‖f ‖X � ‖f ∗∗‖X̄ , then the next inequality can be added
to the list of equivalences

‖f ‖Ȳ � ‖f ‖LS(X) + ‖f ‖L1. (6)

As a concrete illustration6 consider the family of probability measures on the real line given by dμr(t) =
α−1

r e−|t |r dt = ϕr(t)dt , 1 < r � 2, where α−1
r is chosen to ensure that μr(R) =1. These probabilities form a scale be-

tween exponential and Gaussian measure. The associated isoperimetric profile is given by Iμr (t) = ϕr(F
−1
r (t)), where

F−1
r is the inverse of the distribution function associated to the density ϕr(t) (cf. [5]). The isoperimetric profiles Iμ⊗n

r
,

associated to the product probability measures μ⊗n
r , is dimension free (see [1]): there is a universal constant c(r) such

that Iμr (t) � infn�1 Iμ⊗n
r

(t) � c(r)Iμr (t). As an application let n � 2, and apply Theorem 2.2 to X = Lp(Rn,dμ⊗n
r ),

1 � p < ∞, then (cf. also [11, Theorem 3]),

1∫
0

((
f −

∫
f

)∗
(s)

Iμr (s)

s

)p

ds �
∫
Rn

∣∣∇f (x)
∣∣p dμ⊗n

r (x),

with dimension free constants. In particular, since (see [5, Lemma 16.1]) limt→0+ Iμr (t)

t (log 1
t
)1/q

= r , 1/r + 1/q = 1, it

follows easily that

1∫
0

f ∗(s)p
(

log
1

s

)p/q

ds �
∫
Rn

∣∣∇f (x)
∣∣p dμ⊗n

r (x) +
∫
Rn

∣∣f (x)
∣∣p dμ⊗n

r (x).

5 This choice of I is motivated by the results in [6,3] and [1].
6 For further examples we refer to [4,13], and the references therein.
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Moreover, for this class of measures, Lp(LogL)p/q is the best possible choice among all r.i. spaces Y for which the
inequality ‖f − ∫

f ‖Y � ‖∇f ‖Lp holds. If p = ∞, we have∥∥∥∥f −
∫

f

∥∥∥∥
LS(L∞)

=
∥∥∥∥
((

f −
∫

f

)∗∗
(t) −

(
f −

∫
f

)∗
(t)

)
Iμr (t)

t

∥∥∥∥
L∞

� ‖∇f ‖L∞ . (7)

The relation to concentration inequalities follows directly from our main inequality. Indeed, we have

sup
t<1

{(
f ∗∗(t) − f ∗(t)

)Iμr (t)

t

}
� sup

t
|∇f |∗∗(t) = ‖f ‖Lip,

which, by the asymptotic properties of Iμr , implies that f ∗∗(t) − f ∗(t) � ‖f ‖Lip

(log 1
t
)1/q

(0 < t < 1/2). We may now

proceed as in [[10], Section 7].
Let us finally consider Sobolev embeddings into L∞. Notice that from inequality (1) we get

‖f ‖∞ − 2

1/2∫
0

f ∗(t) =
1/2∫
0

(
f ∗∗(t) − f ∗(t)

)dt

t
�

1/2∫
0

(
1

t

t∫
0

|∇f |∗(s)ds

)
dt

Iμr (t)
=

1/2∫
0

|∇f |∗(s)
1/2∫
s

ds

Iμr (s)s
.

Using the asymptotics of Iμr (s) combined with the Poincaré inequality (3) yields

‖f − mf ‖∞ �
1/2∫
0

|∇f |∗(s) ds

s(log 1
s
)1/q

.
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