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Abstract

A Lorentz-covariant relativistic Brownian motion has been defined by Dudley in the framework of special relativity, and extended
to general relativity by Franchi and Le Jan. It is a random timelike curve of class C1, the world-line of a particle with an intrinsic
(i.e., relativistically covariant) law of motion. Building on the Franchi–Le Jan process, we propose a possible definition for random
spacelike curves enjoying relativistic covariance; they are more regular (at least C2) than the timelike ones. To cite this article:
M. Émery, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur certains processus stochastiques à covariance relativiste dans les espaces-temps lorentziens. Défini en relativité res-
treinte par Dudley, le mouvement brownien relativiste à covariance lorentzienne a été étendu à la relativité générale par Franchi et
Le Jan. C’est une courbe aléatoire de classe C1, de genre temps, et dont la dynamique jouit de la covariance relativiste. En utilisant
le processus de Franchi et Le Jan, nous définissons des courbes aléatoires de genre espace et à dynamique covariante. Ces courbes
sont plus régulières (C2 au moins) que celles de Franchi et Le Jan. Pour citer cet article : M. Émery, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The mathematical Brownian motion B , as introduced by A. Einstein [2] (independently of earlier work by L. Bache-
lier), is a non-relativistic model of the physical Brownian motion. It does not have Galilean covariance, for the frames
where the ambient fluid is at rest play a special role; adding a constant drift to B changes its dynamics. Similarly,
for the same reason, relativistic models of physical Brownian motion [5] cannot be Lorentz covariant. But, if B is a
classical Brownian motion in R

d , the process Yt = ∫ t

0 Bs ds, with velocity B and with C1 paths, obeys a Galilean-
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covariant dynamics. In 1966, R.M. Dudley [1] considered a relativistic analogue to Y , a mathematical stochastic
process, whose paths are C1 timelike curves (i.e., world-lines) in the Minkowski space-time, and whose dynamics is
Lorentz covariant.

Let E be a d-dimensional Euclidean vector space, and M = R × E the associated (d + 1)-dimensional
Minkowski space-time, with generic element x = (x0, x→), and with the Lorentzian scalar product q(x, y) =
x0y0 − x→ · y→. The unitary elements of M form a d-dimensional manifold with three connected components:
H

+ = {x ∈ M: q(x, x) = 1 and x0 > 0}, H
− = {x ∈ M: q(x, x) = 1 and x0 < 0}, and H

sp = {x ∈ M: q(x, x) = −1}.
(There is one exception, though: when d = 1, H

sp is no longer a connected hyperboloid of one sheet, but a hyperbola,
with two connected components.) The submanifolds H

+ and H
− of M are spacelike, so the geometry they inherit

from M is Riemannian (with a negative definite metric); if d > 1 they have constant curvature −1. The submanifold
H

sp is timelike, its induced structure is Lorentzian, with constant curvature −1 (when d = 1, it becomes Riemannian).
Dudley’s Brownian motion is the random timelike curve xt in M defined as follows: it is parametrized by its

proper time t ; and its direction ẋt at time t , which is a “four-vector” in H
+, is a Riemannian Brownian motion in the

hyperbolic space H
+. It is convenient to introduce a scale parameter σ , because the speed of light has been set to 1,

thus providing a relation between lengths and durations; so the diffusion coefficient of the Brownian motion cannot
be arbitrarily set to 1 too (as is usually done in the classical setting), for this would impose another such relation and
kill the scaling invariance. Hence Dudley’s BM in M is defined by ẋt being the diffusion in H

+ with infinitesimal

generator σ 2

2 �H+ (instead of 1
2 �H+ ).

Dudley’s definition has been extended by Franchi and Le Jan [3] from the flat Minkowski space-time M to an
arbitrary Lorentzian manifold M. A Franchi–Le Jan Brownian motion in M is obtained by “rolling without slipping”
M on M in such a way that M remains tangent to M, with the Minkowskian structure of the tangent space to M
agreeing with that of M, and the contact point describing a Dudley BM in M; the locus in M of the contact point is
then a Franchi–Le Jan BM in M. More rigorously, a C1, timelike curve xt in M, parametrized by its proper time, is a
Franchi–Le Jan BM whenever the pull-back P −1

x;0,t
ẋt of its velocity ẋt by the parallel transport P

x;0,t
: Tx0 M → Txt M

along the path (xs, s ∈ [0, t]) is the velocity of a Dudley BM in the Minkowskian space Tx0 M. Equivalently, if
Ft = (e0(t), e1(t), . . . , ed(t)) is for each t a random orthonormal Minkowskian frame of Txt M, depending previsibly
upon t , and such that e0(t) = ẋt , then the Itô differential dẋt (for the horizontal connection) is read in the frame Ft as
(0, σ dB1

t , . . . , σ dBd
t ), where (B1, . . . ,Bd) is a standard BM in R

d .

2. Spacelike covariant processes

In a Lorentzian manifold, do there exist random spacelike curves having Lorentz covariance? From a physicist’s
viewpoint, this question is quite uninteresting; spacelike curves do not seem to have any physical meaning, and are
hardly ever mentioned, if at all, in books on relativity. But from a geometric point of view, covariant M-valued
spacelike stochastic processes can be considered as mathematical tools for the study of M, on a par with the Franchi–
Le Jan timelike motion in M, or with Brownian motion in a Riemannian manifold. We shall henceforth sketch a
possible definition of such processes.

A C1, spacelike curve x is naturally parametrized by its “proper arc length” t , which can be defined by q(ẋt , ẋt ) =
−1. (The orientation of the curve is not intrinsically provided by the space-time structure; it has to be chosen.) The
instantaneous direction ẋt ∈ Txt M can be pulled back to Tx0 M by parallel transport. This yields a curve yt = P −1

x;0,t
ẋt

in the tangent space Tx0 M, or rather in the negative-unit ball H
sp
Tx0 M of that space, because q(yt , yt ) = −1. The

dynamics of x in M is fully described by that of y in H
sp
Tx0 M, and either of them is intrinsic if and only if so is also

the other. Now, H
sp
Tx0 M can be identified with H

sp by choosing orthonormal bases in Tx0 M and in M. The problem

of defining covariant spacelike random curves in M thus reduces to defining covariant stochastic processes in H
sp.

Since the intrinsic structure of H
sp is that of a Lorentzian submanifold of M, constructing x amounts to constructing

an intrinsic stochastic process valued in the Lorentzian manifold H
sp.

We have such a process at hand: the Franchi–Le Jan timelike random motion in the manifold H
sp. This leads to the

following definition: A spacelike random curve x in M, parametrized by arc length, will be called a second-order
Brownian motion if its direction ẋt , when parallel-transported back to Tx0 M, moves as a Franchi–Le Jan process in
the d-dimensional Lorentzian manifold H

sp
T M.
x0
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Naturally, in this setting, the Franchi–Le Jan processes are called first-order Brownian motions. Observe that, since
the paths of first-order Brownian motions are C1, those of second-order BM are C2: regularity has increased by 1,
this is the price paid for a spacelike evolution with an intrinsic random noise. On the other hand, first-order BM
has stochastic dimension d (its filtration is that of a BM in R

d ), and second-order BM has stochastic dimension
d − 1, because one degree of freedom is lost when passing from M, which is (d + 1)-dimensional, to H

sp, which is
d-dimensional.

Remark also that the intrinsic acceleration ẍt of a second-order Brownian motion is not only timelike, but also
future-pointing; this is a sort of convexity property. Second-order Brownian motions with past-pointing acceleration
also exist; a new definition is not necessary, for reversing the time-orientation of M does the trick.

It may be worth noticing that, even in the special-relativistic case when the manifold M is the flat Minkowski
space-time M, the definition of second-order Brownian motions involves a Franchi–Le Jan process in the curved
space-time H

sp; the general-relativistic setup cannot be avoided.
There is no reason to stop there, and Brownian motions of higher orders can similarly be defined: Brownian motion

of order n is a spacelike random curve x in M, parametrized by arc-length, such that the motion of P −1
x;0,t

ẋt in Tx0 M
is Brownian of order n − 1 in the Lorentzian sub-manifold H

sp
Tx0 M of Tx0 M. Brownian motion of order n exists for

n � d , is of class Cn, and has stochastic dimension d + 1 − n. Its law depends on the initial conditions

x0 ∈ M; ẋ0 ∈ H
sp
Tx0 M = M1; ẍ0 ∈ H

sp
Tẋ0 M1 = M2; . . . x

(n)
0 ∈ H

+
T

x
(n−1)
0

Mn−1 ,

where all H-spaces are of the form H
sp, except the last one which is an H

+ and whose Riemannian structure
allows randomness to enter the picture as an intrinsic Riemannian Brownian motion. The n-th derivative is future-
pointing, but can also be made past-pointing, by replacing H

+ with H
−. When n = d , the timelike condition

x
(n)
0 ∈ H

+
T

x
(n−1)
0

Mn−1 on the n-th derivative can also be replaced by the spacelike condition x
(n)
0 ∈ H

sp
T

x
(n−1)
0

Mn−1 ,

because this H
sp, a one-dimensional hyperbola, is no longer Lorentzian but Riemannian, and supports an intrinsic

Brownian motion (two of them in fact, one on each branch of the hyperbola).
The stochastic process xt is not Markov, but (xt , ẋt , . . . , x

(n)
t ) is a Markovian, very degenerate diffusion. In the

deterministic case when the parameter σ (which rules the behavior of x(n)) vanishes, x simply becomes a curve with
null covariant n+1-st derivative.

3. The simplest example

To make these definitions less abstract, we shall explicitly describe a second-order Brownian motion xt val-
ued in the Minkowskian space-time M = R × E with scalar product q(x, y) = x0y0 − x→ · y→. We assume
that d = dim E � 2. The velocity yt = ẋt is a Franchi–Le Jan Brownian motion in the hyperboloid
H

sp = {y ∈ M: q(y, y) = −1}. The equations governing yt are the equations of timelike geodesics in H
sp, with

an additional noise term on dẏt . The geodesic with initial conditions y0 ∈ H
sp and ẏ0 ∈ Ty0H

sp, where q(ẏ0, ẏ0) = 1,
is given in M by yt = y0 ch t + ẏ0 sh t (see for instance [4]); so its law of motion is

dyt = ẏt dt, dẏt = yt dt.

The noise term to be added to dẏt is (σ times) a Brownian differential in the (d−1)-dimensional Euclidean space
St orthogonal to yt and ẏt in M. It is convenient to use Stratonovich differentials (we denote them by the symbol δ

instead of d), to avoid the drift term which compensates for the extrinsic curvature of H
+
Tyt H

sp in Tyt H
sp. The noise

term can for instance be written as σ�(δB→), where B→ is an ordinary Brownian motion in the Euclidean space E,
and � : E → St any linear map such that ��′ = IdSt , with �′ : St → E standing for the adjoint of �. A possible choice
for � is as follows. Define

rt = ‖y→
t ∧ ẏ→

t ‖2 = (
ẏ0
t

)2 − (
y0
t

)2 − 1, u→
t = ẏ0

t y→
t − y0

t ẏ→
t and v→

t = ẏ0
t ẏ→

t − y0
t y→

t ;
observe that u→

t ·u→
t = rt +1, u→

t ·v→
t = 0 and v→

t ·v→
t = rt (rt +1). In M, the three vectors yt , ẏt and zt = (rt , v

→
t )

remain orthogonal to each other, with q(zt , zt ) = −rt . We shall define � so that �(y→
t ) and �(ẏ→

t ) are multiples of zt ,
and that � maps isometrically the space orthogonal to y→

t and ẏ→
t in E onto the space orthogonal to zt in St . This can

be achieved by putting
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�(u→
t ) = 0, �(v→

t ) = √
rt + 1 zt , �(w→) = (0,w→) if w→ is orthogonal to u→

t and v→
t .

Finally, a system of Stratonovich equations in M for the Franchi–Le Jan Brownian motion yt in H
sp is⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δy0
t = ẏ0

t δt,

δy→
t = ẏ→

t δt,

δẏ0
t = y0

t δt + σ
v→
t · δB→

t√
rt + 1

,

δẏ→
t = y→

t δt + σ

[
δB→

t − u→
t · δB→

t

rt + 1
u→

t + (
√

rt + 1 − 1)
v→
t · δB→

t

rt (rt + 1)
v→
t

]
,

with initial conditions y0 and ẏ0 in M such that q(y0, y0) = −1, q(y0, ẏ0) = 0 and q(ẏ0, ẏ0) = 1. The second-order
Brownian motion xt = (x0

t , x→
t ) in M is now obtained by complementing this system with the additional two equa-

tions {
δx0

t = y0
t δt,

δx→
t = y→

t δt

and an initial condition x0 ∈ M.
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