

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 347 (2009) 817-820

Probability Theory

On some relativistic-covariant stochastic processes in Lorentzian space-times

Michel Émery

IRMA, 7, rue René Descartes, 67084 Strasbourg cedex, France Received 3 March 2009; accepted 16 April 2009 Available online 14 May 2009 Presented by Marc Yor

He querido proceder por definición, no por suposición [...]. J.L. BORGES, *Evaristo Carriego*.

Abstract

A Lorentz-covariant relativistic Brownian motion has been defined by Dudley in the framework of special relativity, and extended to general relativity by Franchi and Le Jan. It is a random timelike curve of class C^1 , the world-line of a particle with an intrinsic (i.e., relativistically covariant) law of motion. Building on the Franchi–Le Jan process, we propose a possible definition for random spacelike curves enjoying relativistic covariance; they are more regular (at least C^2) than the timelike ones. *To cite this article: M. Émery, C. R. Acad. Sci. Paris, Ser. I 347 (2009).*

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur certains processus stochastiques à covariance relativiste dans les espaces-temps lorentziens. Défini en relativité restreinte par Dudley, le mouvement brownien relativiste à covariance lorentzienne a été étendu à la relativité générale par Franchi et Le Jan. C'est une courbe aléatoire de classe C^1 , de genre temps, et dont la dynamique jouit de la covariance relativiste. En utilisant le processus de Franchi et Le Jan, nous définissons des courbes aléatoires de genre espace et à dynamique covariante. Ces courbes sont plus régulières (C^2 au moins) que celles de Franchi et Le Jan. *Pour citer cet article : M. Émery, C. R. Acad. Sci. Paris, Ser. I* 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The mathematical Brownian motion *B*, as introduced by A. Einstein [2] (independently of earlier work by L. Bachelier), is a non-relativistic model of the physical Brownian motion. It does not have Galilean covariance, for the frames where the ambient fluid is at rest play a special role; adding a constant drift to *B* changes its dynamics. Similarly, for the same reason, relativistic models of physical Brownian motion [5] cannot be Lorentz covariant. But, if *B* is a classical Brownian motion in \mathbb{R}^d , the process $Y_t = \int_0^t B_s \, ds$, with velocity *B* and with C¹ paths, obeys a Galilean-

1631-073X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.04.015

E-mail address: emery@math.u-strasbg.fr.

covariant dynamics. In 1966, R.M. Dudley [1] considered a relativistic analogue to Y, a mathematical stochastic process, whose paths are C¹ timelike curves (i.e., world-lines) in the Minkowski space-time, and whose dynamics is Lorentz covariant.

Let \mathbb{E} be a *d*-dimensional Euclidean vector space, and $\mathbb{M} = \mathbb{R} \times \mathbb{E}$ the associated (d + 1)-dimensional Minkowski space-time, with generic element $x = (x^0, x^{\rightarrow})$, and with the Lorentzian scalar product $q(x, y) = x^0 y^0 - x^{\rightarrow} \cdot y^{\rightarrow}$. The unitary elements of \mathbb{M} form a *d*-dimensional manifold with three connected components: $\mathbb{H}^+ = \{x \in \mathbb{M}: q(x, x) = 1 \text{ and } x^0 > 0\}, \mathbb{H}^- = \{x \in \mathbb{M}: q(x, x) = 1 \text{ and } x^0 < 0\}$, and $\mathbb{H}^{\text{sp}} = \{x \in \mathbb{M}: q(x, x) = -1\}$. (There is one exception, though: when d = 1, \mathbb{H}^{sp} is no longer a connected hyperboloid of one sheet, but a hyperbola, with two connected components.) The submanifolds \mathbb{H}^+ and \mathbb{H}^- of \mathbb{M} are spacelike, so the geometry they inherit from \mathbb{M} is Riemannian (with a negative definite metric); if d > 1 they have constant curvature -1. The submanifold \mathbb{H}^{sp} is timelike, its induced structure is Lorentzian, with constant curvature -1 (when d = 1, it becomes Riemannian).

Dudley's Brownian motion is the random timelike curve x_t in \mathbb{M} defined as follows: it is parametrized by its proper time t; and its direction \dot{x}_t at time t, which is a "four-vector" in \mathbb{H}^+ , is a Riemannian Brownian motion in the hyperbolic space \mathbb{H}^+ . It is convenient to introduce a scale parameter σ , because the speed of light has been set to 1, thus providing a relation between lengths and durations; so the diffusion coefficient of the Brownian motion cannot be arbitrarily set to 1 too (as is usually done in the classical setting), for this would impose another such relation and kill the scaling invariance. Hence Dudley's BM in \mathbb{M} is defined by \dot{x}_t being the diffusion in \mathbb{H}^+ with infinitesimal generator $\frac{\sigma^2}{2} \Delta_{\mathbb{H}^+}$ (instead of $\frac{1}{2} \Delta_{\mathbb{H}^+}$).

Dudley's definition has been extended by Franchi and Le Jan [3] from the flat Minkowski space-time \mathbb{M} to an arbitrary Lorentzian manifold \mathcal{M} . A Franchi–Le Jan Brownian motion in \mathcal{M} is obtained by "rolling without slipping" \mathbb{M} on \mathcal{M} in such a way that \mathbb{M} remains tangent to \mathcal{M} , with the Minkowskian structure of the tangent space to \mathcal{M} agreeing with that of \mathbb{M} , and the contact point describing a Dudley BM in \mathbb{M} ; the locus in \mathcal{M} of the contact point is then a Franchi–Le Jan BM in \mathcal{M} . More rigorously, a C¹, timelike curve x_t in \mathcal{M} , parametrized by its proper time, is a Franchi–Le Jan BM whenever the pull-back $P_{x;0,t}^{-1}\dot{x}_t$ of its velocity \dot{x}_t by the parallel transport $P_{x;0,t}$: $T_{x_0}\mathcal{M} \to T_{x_t}\mathcal{M}$ along the path $(x_s, s \in [0, t])$ is the velocity of a Dudley BM in the Minkowskian space $T_{x_0}\mathcal{M}$. Equivalently, if $F_t = (e_0(t), e_1(t), \ldots, e_d(t))$ is for each t a random orthonormal Minkowskian frame of $T_{x_t}\mathcal{M}$, depending previsibly upon t, and such that $e_0(t) = \dot{x}_t$, then the Itô differential $d\dot{x}_t$ (for the horizontal connection) is read in the frame F_t as $(0, \sigma dB_t^1, \ldots, \sigma dB_t^d)$, where (B^1, \ldots, B^d) is a standard BM in \mathbb{R}^d .

2. Spacelike covariant processes

In a Lorentzian manifold, do there exist random spacelike curves having Lorentz covariance? From a physicist's viewpoint, this question is quite uninteresting; spacelike curves do not seem to have any physical meaning, and are hardly ever mentioned, if at all, in books on relativity. But from a geometric point of view, covariant \mathcal{M} -valued spacelike stochastic processes can be considered as mathematical tools for the study of \mathcal{M} , on a par with the Franchi–Le Jan timelike motion in \mathcal{M} , or with Brownian motion in a Riemannian manifold. We shall henceforth sketch a possible definition of such processes.

A C¹, spacelike curve x is naturally parametrized by its "proper arc length" t, which can be defined by $q(\dot{x}_t, \dot{x}_t) = -1$. (The orientation of the curve is not intrinsically provided by the space-time structure; it has to be chosen.) The instantaneous direction $\dot{x}_t \in T_{x_t} \mathcal{M}$ can be pulled back to $T_{x_0} \mathcal{M}$ by parallel transport. This yields a curve $y_t = P_{x;0,t}^{-1} \dot{x}_t$ in the tangent space $T_{x_0} \mathcal{M}$, or rather in the negative-unit ball $\mathbb{H}_{T_{x_0} \mathcal{M}}^{sp}$ of that space, because $q(y_t, y_t) = -1$. The dynamics of x in \mathcal{M} is fully described by that of y in $\mathbb{H}_{T_{x_0} \mathcal{M}}^{sp}$, and either of them is intrinsic if and only if so is also the other. Now, $\mathbb{H}_{T_{x_0} \mathcal{M}}^{sp}$ can be identified with \mathbb{H}^{sp} by choosing orthonormal bases in $T_{x_0} \mathcal{M}$ and in \mathbb{M} . The problem of defining covariant spacelike random curves in \mathcal{M} thus reduces to defining covariant stochastic processes in \mathbb{H}^{sp} . Since the intrinsic structure of \mathbb{H}^{sp} is that of a Lorentzian submanifold of \mathbb{M} , constructing x amounts to constructing an intrinsic stochastic process valued in the Lorentzian manifold \mathbb{H}^{sp} .

We have such a process at hand: the Franchi–Le Jan timelike random motion in the manifold \mathbb{H}^{sp} . This leads to the following definition: A spacelike random curve x in \mathcal{M} , parametrized by arc length, will be called a second-order Brownian motion if its direction \dot{x}_t , when parallel-transported back to $T_{x_0}\mathcal{M}$, moves as a Franchi–Le Jan process in the d-dimensional Lorentzian manifold $\mathbb{H}^{sp}_{T_{x_0}\mathcal{M}}$.

Naturally, in this setting, the Franchi–Le Jan processes are called *first-order Brownian motions*. Observe that, since the paths of first-order Brownian motions are C¹, those of second-order BM are C²: regularity has increased by 1, this is the price paid for a spacelike evolution with an intrinsic random noise. On the other hand, first-order BM has stochastic dimension d (its filtration is that of a BM in \mathbb{R}^d), and second-order BM has stochastic dimensional, to \mathbb{H}^{sp} , which is d-dimensional.

Remark also that the intrinsic acceleration \ddot{x}_t of a second-order Brownian motion is not only timelike, but also future-pointing; this is a sort of convexity property. Second-order Brownian motions with past-pointing acceleration also exist; a new definition is not necessary, for reversing the time-orientation of \mathcal{M} does the trick.

It may be worth noticing that, even in the special-relativistic case when the manifold \mathcal{M} is the flat Minkowski space-time \mathbb{M} , the definition of second-order Brownian motions involves a Franchi–Le Jan process in the *curved* space-time \mathbb{H}^{sp} ; the general-relativistic setup cannot be avoided.

There is no reason to stop there, and Brownian motions of higher orders can similarly be defined: *Brownian motion* of order *n* is a spacelike random curve *x* in \mathcal{M} , parametrized by arc-length, such that the motion of $P_{x;0,t}^{-1}\dot{x}_t$ in $T_{x_0}\mathcal{M}$ is Brownian of order n-1 in the Lorentzian sub-manifold $\mathbb{H}_{T_{x_0}\mathcal{M}}^{\text{sp}}$ of $T_{x_0}\mathcal{M}$. Brownian motion of order *n* exists for $n \leq d$, is of class \mathbb{C}^n , and has stochastic dimension d+1-n. Its law depends on the initial conditions

$$x_0 \in \mathcal{M}; \quad \dot{x}_0 \in \mathbb{H}^{\mathrm{sp}}_{T_{x_0}\mathcal{M}} = \mathcal{M}^1; \quad \ddot{x}_0 \in \mathbb{H}^{\mathrm{sp}}_{T_{\dot{x}_0}\mathcal{M}^1} = \mathcal{M}^2; \quad \dots \quad x_0^{(n)} \in \mathbb{H}^+_{T_{x_0^{(n-1)}}\mathcal{M}^{n-1}}$$

where all \mathbb{H} -spaces are of the form \mathbb{H}^{sp} , except the last one which is an \mathbb{H}^+ and whose Riemannian structure allows randomness to enter the picture as an intrinsic Riemannian Brownian motion. The *n*-th derivative is futurepointing, but can also be made past-pointing, by replacing \mathbb{H}^+ with \mathbb{H}^- . When n = d, the timelike condition $x_0^{(n)} \in \mathbb{H}^+_{T_{x_0^{(n-1)}}\mathcal{M}^{n-1}}$ on the *n*-th derivative can also be replaced by the spacelike condition $x_0^{(n)} \in \mathbb{H}^{\text{sp}}_{T_{x_0^{(n-1)}}\mathcal{M}^{n-1}}$, because this \mathbb{H}^{sp} , a one-dimensional hyperbola, is no longer Lorentzian but Riemannian, and supports an intrinsic

Brownian motion (two of them in fact, one on each branch of the hyperbola).

The stochastic process x_t is not Markov, but $(x_t, \dot{x}_t, \dots, x_t^{(n)})$ is a Markovian, very degenerate diffusion. In the deterministic case when the parameter σ (which rules the behavior of $x^{(n)}$) vanishes, x simply becomes a curve with null covariant n+1-st derivative.

3. The simplest example

To make these definitions less abstract, we shall explicitly describe a second-order Brownian motion x_t valued in the Minkowskian space-time $\mathbb{M} = \mathbb{R} \times \mathbb{E}$ with scalar product $q(x, y) = x^0 y^0 - x^{\rightarrow} \cdot y^{\rightarrow}$. We assume that $d = \dim \mathbb{E} \ge 2$. The velocity $y_t = \dot{x}_t$ is a Franchi–Le Jan Brownian motion in the hyperboloid $\mathbb{H}^{sp} = \{y \in \mathbb{M}: q(y, y) = -1\}$. The equations governing y_t are the equations of timelike geodesics in \mathbb{H}^{sp} , with an additional noise term on $d\dot{y}_t$. The geodesic with initial conditions $y_0 \in \mathbb{H}^{sp}$ and $\dot{y}_0 \in T_{y_0} \mathbb{H}^{sp}$, where $q(\dot{y}_0, \dot{y}_0) = 1$, is given in \mathbb{M} by $y_t = y_0 \operatorname{ch} t + \dot{y}_0 \operatorname{sh} t$ (see for instance [4]); so its law of motion is

$$\mathrm{d} y_t = \dot{y}_t \, \mathrm{d} t, \quad \mathrm{d} \dot{y}_t = y_t \, \mathrm{d} t.$$

The noise term to be added to $d\dot{y}_t$ is (σ times) a Brownian differential in the (d-1)-dimensional Euclidean space S_t orthogonal to y_t and \dot{y}_t in \mathbb{M} . It is convenient to use Stratonovich differentials (we denote them by the symbol δ instead of d), to avoid the drift term which compensates for the extrinsic curvature of $\mathbb{H}^+_{T_{y_t}\mathbb{H}^{\text{sp}}}$ in $T_{y_t}\mathbb{H}^{\text{sp}}$. The noise term can for instance be written as $\sigma \ell(\delta B^{\rightarrow})$, where B^{\rightarrow} is an ordinary Brownian motion in the Euclidean space \mathbb{E} , and $\ell : \mathbb{E} \to S_t$ any linear map such that $\ell \ell' = \text{Id}_{S_t}$, with $\ell' : S_t \to \mathbb{E}$ standing for the adjoint of ℓ . A possible choice for ℓ is as follows. Define

$$r_{t} = \|y_{t}^{\rightarrow} \wedge \dot{y}_{t}^{\rightarrow}\|^{2} = (\dot{y}_{t}^{0})^{2} - (y_{t}^{0})^{2} - 1, \quad u_{t}^{\rightarrow} = \dot{y}_{t}^{0} y_{t}^{\rightarrow} - y_{t}^{0} \dot{y}_{t}^{\rightarrow} \quad \text{and} \quad v_{t}^{\rightarrow} = \dot{y}_{t}^{0} \dot{y}_{t}^{\rightarrow} - y_{t}^{0} y_{t}^{\rightarrow};$$

observe that $u_t^{\rightarrow} \cdot u_t^{\rightarrow} = r_t + 1$, $u_t^{\rightarrow} \cdot v_t^{\rightarrow} = 0$ and $v_t^{\rightarrow} \cdot v_t^{\rightarrow} = r_t(r_t + 1)$. In \mathbb{M} , the three vectors y_t , \dot{y}_t and $z_t = (r_t, v_t^{\rightarrow})$ remain orthogonal to each other, with $q(z_t, z_t) = -r_t$. We shall define ℓ so that $\ell(y_t^{\rightarrow})$ and $\ell(\dot{y}_t^{\rightarrow})$ are multiples of z_t , and that ℓ maps isometrically the space orthogonal to y_t^{\rightarrow} and \dot{y}_t^{\rightarrow} in \mathbb{E} onto the space orthogonal to z_t in S_t . This can be achieved by putting

$$\ell(u_t^{\rightarrow}) = 0, \quad \ell(v_t^{\rightarrow}) = \sqrt{r_t + 1} z_t, \quad \ell(w^{\rightarrow}) = (0, w^{\rightarrow}) \quad \text{if } w^{\rightarrow} \text{ is orthogonal to } u_t^{\rightarrow} \text{ and } v_t^{\rightarrow}.$$

Finally, a system of Stratonovich equations in \mathbb{M} for the Franchi–Le Jan Brownian motion y_t in \mathbb{H}^{sp} is

$$\begin{cases} \delta y_t^0 = \dot{y}_t^0 \delta t, \\ \delta y_t^- = \dot{y}_t^- \delta t, \\ \delta \dot{y}_t^0 = y_t^0 \delta t + \sigma \frac{v_t^- \cdot \delta B_t^-}{\sqrt{r_t + 1}}, \\ \delta \dot{y}_t^- = y_t^- \delta t + \sigma \left[\delta B_t^- - \frac{u_t^- \cdot \delta B_t^-}{r_t + 1} u_t^- + (\sqrt{r_t + 1} - 1) \frac{v_t^- \cdot \delta B_t^-}{r_t(r_t + 1)} v_t^- \right], \end{cases}$$

with initial conditions y_0 and \dot{y}_0 in \mathbb{M} such that $q(y_0, y_0) = -1$, $q(y_0, \dot{y}_0) = 0$ and $q(\dot{y}_0, \dot{y}_0) = 1$. The second-order Brownian motion $x_t = (x_t^0, x_t^{\rightarrow})$ in \mathbb{M} is now obtained by complementing this system with the additional two equations

$$\begin{cases} \delta x_t^0 = y_t^0 \delta t, \\ \delta x_t^{\rightarrow} = y_t^{\rightarrow} \delta t \end{cases}$$

and an initial condition $x_0 \in \mathbb{M}$.

References

- [1] R.M. Dudley, A note on Lorentz-invariant Markov processes in relativistic phase-space, Ark. Math. 6 (1966) 241-268.
- [2] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 17 (1905) 549–560.
- [3] J. Franchi, Y. Le Jan, Relativistic diffusions and Schwarzschild geometry, Comm. Pure Appl. Math. 60 (2007) 187-251.
- [4] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [5] G. Schay, The equations of diffusion in the special theory of relativity, Ph.D. Thesis, Princeton University, 1961.