Differential Geometry/Mathematical Physics

Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space ${ }^{\text {** }}$

Li Ma ${ }^{\text {a }}$, Xingwang Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
${ }^{\mathrm{b}}$ Mathematics Department, The National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260

Received 30 January 2009; accepted after revision 9 April 2009
Available online 9 May 2009
Presented by Étienne Ghys

Abstract

In this Note, we give a uniform bound and a non-existence result for positive solutions to the Lichnerowicz equation in \mathbf{R}^{n}. In particular, we show that positive smooth solutions to:

$$
\Delta u+f(u)=0, \quad u>0, \quad \text { in } \mathbf{R}^{n}
$$

where

$$
f(u)=u^{-p-1}-u^{p-1}
$$

are uniformly bounded. To cite this article: L. Ma, X. Xu, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une estimation uniforme et un résultat de non-existence pour l'équation de Lichnerowicz sur n-espace. Dans cette Note, nous donnons une estimation uniforme et un résultat de non-existence pour les solutions positives de l'équation de Lichnerowicz sur \mathbf{R}^{n}. En particulier, nous montrons que les solutions positives régulières de :

$$
\Delta u+f(u)=0, \quad u>0, \quad \operatorname{dans} \mathbf{R}^{n}
$$

où

$$
f(u)=u^{-p-1}-u^{p-1}
$$

sont bornées. Pour citer cet article : L. Ma, X. Xu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

[^0]1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2009.04.017

1. Introduction

In the Einstein-scalar field theory one has the Lichnerowicz equation on a Riemannian manifold (M, γ) of dimension $n \geqslant 3$ (see $[2,3,6]$). The aim of this paper is to give some results for positive solutions to this equation in the whole Euclidean space.

Given a smooth symmetric 2-tensor σ, a smooth vector field W, and a triple data (π, τ, φ) of smooth functions on M. Set

$$
c_{n}=\frac{n-2}{4(n-1)}, \quad p=\frac{2 n}{n-2},
$$

and let

$$
R_{\gamma, \varphi}=c_{n}\left(R(\gamma)-|\nabla \varphi|_{\gamma}^{2}\right), \quad A_{\gamma, W, \pi}=c_{n}\left(|\sigma+D W|_{\gamma}^{2}+\pi^{2}\right)
$$

and

$$
B_{\tau, \varphi}=c_{n}\left(\frac{n-1}{n} \tau^{2}-V(\varphi)\right)
$$

where $V: \mathbf{R} \rightarrow \mathbf{R}$ is a given smooth function and $R(\gamma)$ is the scalar curvature function of γ. Then the Lichnerowicz equation for the Einstein-scalar conformal data ($\gamma, \sigma, \pi, \tau, \varphi$) with the given vector field W is

$$
\begin{equation*}
\Delta_{\gamma} u-R_{\gamma, \varphi} u+A_{\gamma, W, \pi} u^{-p-1}-B_{\tau, \varphi} u^{p-1}=0, \quad u>0, \tag{1}
\end{equation*}
$$

where Δ_{γ} is the Laplacian operator of γ. We use the convention that $\Delta_{\gamma} u=u^{\prime \prime}$ on the real line \mathbf{R}. Note that $A_{\gamma, W, \pi} \geqslant$ 0 . This equation is closely related to the Yamabe problem and the prescribing scalar curvature problems (see [1,7,8]).

We shall consider a special case when $(M, \gamma)=\mathbf{R}^{n}$ is the standard Euclidean space with radial symmetry data $(\sigma, \pi, \tau, \varphi)$. In this case, we can simply rewrite the equation in the following form

$$
\begin{equation*}
\Delta u+R(x) u+A(x) u^{-p-1}+B(x) u^{p-1}=0, \quad u>0, \quad \text { on } \mathbf{R}^{n} \tag{2}
\end{equation*}
$$

where $R(x) \geqslant 0, A(x) \geqslant 0$, and $B(x)$ are given smooth functions of $x \in R^{n}$.
Theorem 1. Suppose that $A:=A(x) \geqslant 0, B:=B(x) \geqslant 0$, and $R(x) \geqslant 0$. Let $\beta=\frac{p+1}{2 p}$. Assume that

$$
\begin{equation*}
\int_{0}^{+\infty} \mathrm{d} r\left(r^{1-n} \int_{B_{r}(0)} A^{1-\beta} B^{\beta} \mathrm{d} x\right)=+\infty \tag{3}
\end{equation*}
$$

Then there exists no positive solution to (2).
Note that $\beta=\frac{3 n-2}{4 n}$, so the condition (3) can be written as

$$
\int_{0}^{+\infty} \mathrm{d} r\left(r^{1-n} \int_{B_{r}(0)} A(x)^{\frac{n+2}{4 n}} B(x)^{\frac{3 n-2}{4 n}} \mathrm{~d} x\right)=+\infty .
$$

As a particular example, we note that when $A^{1-\beta} B^{\beta} \geqslant C>0$ for some positive constant $C>0$, there exists no positive solution to (2).

This result may be extended to other case (see Theorem 3 in next section).
We also have the following uniform bound for any positive solution to (2).
Proposition 2. Assume that $R(x)=0$ and $A(x)=1$ is a positive constant and $B(x)=-B$ is a negative constant in (2). Then any positive solution to (2) is uniformly bounded.

In a recent paper, O. Druet and E. Hebey [4] have proved a very interesting result which says that for Lichnerowicz equation on a compact Riemannian manifold, the stability holds true when the dimension n is such that $n \leqslant 5$ and fails to hold in general when $n \geqslant 6$.

2. Non-existence results

In this section we prove Theorem 1.
Recall our assumption that $B(x) \geqslant 0$ and $R(r) \geqslant 0$. We remark that for each fixed $x \in R^{n}$,

$$
A(x) X^{-p-1}+B(x) X^{p-1}
$$

is a convex function in X.
Proof of Theorem 1. Let $\bar{u}:=\bar{u}(r)$ be the average of $u(x)$ on the sphere $S_{r}^{n-1}(0)$ of radius r.
Note that taking this average operation and using Jensen's inequality to Eq. (2) we have

$$
\begin{equation*}
-\bar{u}^{\prime \prime}-\frac{n-1}{r} \bar{u}^{\prime} \geqslant \overline{R(x) u}+\overline{A(x) u^{-p-1}+B(x) u^{p-1}} . \tag{4}
\end{equation*}
$$

Using the Holder inequality to the right side of (4), we have

$$
\overline{A(x) u^{-p-1}+B(x) u^{p-1}} \geqslant \overline{A^{1-\beta} B^{\beta}}
$$

where

$$
\beta=\frac{p+1}{2 p}
$$

Then we have

$$
-\left(r^{n-1} \bar{u}^{\prime}\right)^{\prime} \geqslant r^{n-1}\left(\overline{R(x) u}+\overline{A^{1-\beta} B^{\beta}}\right)
$$

which implies that

$$
-r^{n-1} \bar{u}^{\prime} \geqslant \int_{B_{r}(0)} A^{1-\beta} B^{\beta} \mathrm{d} x+\int_{B_{r}(0)} R u
$$

after an integration. Dividing both side by r^{n-1} and integrating this inequality over $\left[0, r_{0}\right]$, we have

$$
\bar{u}(0)-\bar{u}\left(r_{0}\right) \geqslant \int_{0}^{r_{0}} \mathrm{~d} r\left(r^{1-n} \int_{B_{r}(0)} A^{1-\beta} B^{\beta} \mathrm{d} x\right)+\int_{0}^{r_{0}} r^{1-n} \int_{B_{r}(0)} R u
$$

Sending $r_{0} \rightarrow \infty$ we have

$$
\bar{u}(0) \geqslant \int_{0}^{\infty} \mathrm{d} r\left(r^{1-n} \int_{0}^{r} \tau^{n-1} A^{1-\beta} B^{\beta} \mathrm{d} \tau\right)
$$

which is impossible by our assumption that

$$
\int_{0}^{+\infty} \mathrm{d} r\left(r^{1-n} \int_{B_{r}(0)} A^{1-\beta} B^{\beta} \mathrm{d} x\right)=+\infty
$$

Then the proof of Theorem 1 is complete.
We remark that from our proof above, we use the interaction between A and B. If we use the interaction between R and A, we can have the following result by the same argument.

Theorem 3. Suppose that $A:=A(x) \geqslant 0, B(x) \geqslant 0$, and $R:=R(x) \geqslant 0$. Let $\beta=\frac{p+1}{2 p}$. Assume that

$$
\int_{0}^{+\infty} \mathrm{d} r\left(r^{1-n} \int_{B_{r}(0)} A(x)^{\frac{n-2}{4(n-1)}} R(x)^{\frac{3 n-2}{4(n-1)}} \mathrm{d} x\right)=+\infty
$$

Then there exists no positive solution to (2).

3. Proof of Proposition 2

In this section, we assume that $R(r)=0$ and $A(r)=1$ is a positive constant and $B(r)=-B$ is a negative constant in (2). Then we may reduce (2) into the following form:

$$
\begin{equation*}
\Delta u+f(u)=0, \quad u>0, \quad \text { on } \mathbf{R}^{n} \tag{5}
\end{equation*}
$$

where

$$
f(u)=u^{-p-1}-B u^{p-1} .
$$

Denote by B_{R} any ball of radius $R>0$ in \mathbf{R}^{n}.
We shall use a trick used in [5]. We look for a positive radial super-solution $v=v(r)$ to (5) in the ball B_{R} with the positive infinity boundary condition. This is equivalent to finding $v=v(r)>0$ such that

$$
\begin{cases}\Delta v+f(v) \leqslant 0, & \text { in } B_{R}, \\ v=+\infty, & \text { on } \partial B_{R} .\end{cases}
$$

Note that

$$
f^{\prime}=-(p+1) u^{-p}-B(p-1) u^{p-2}<0
$$

for $u>0$. Then the comparison lemma is true for (5) in the ball B_{R}. Hence, we have

$$
u(x) \leqslant v(r), \quad \text { in } B_{R} .
$$

From this we know that u is uniformly bounded in \mathbf{R}^{n}.
Let $v(r)=\left(R^{2}-r^{2}\right)^{-\alpha}$ for large $\alpha>1$ and small $R \ll 1$. By direct computation, we know that v is the right super-solution $v=v(r)$ to (5) in the ball B_{R} with positive infinity boundary condition. Hence

$$
u(x) \leqslant 2^{\alpha} R^{-2 \alpha}, \quad \text { in } B_{R / 2}
$$

This proves our Proposition 2.
It is clear that our argument can be generalized to treat positive solutions to the following equation:

$$
\Delta u+A(x) u^{-p-1}-B u^{p-1}=0, \quad \text { in } \mathbf{R}^{n},
$$

where $A(x)$ is a smooth uniformly bounded function in \mathbf{R}^{n}. It is an open question if the Liouville type theorem is true for positive solutions to (5).

Acknowledgements

The authors would like to thank Prof. F. Pacard for sending us Ref. [4].

References

[1] Th. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, New York, 1998.
[2] Y. Choquet-Bruhat, J. Isenberg, D. Pollack, The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B 27 (1) (2006) 31-52.
[3] Y. Choquet-Bruhat, J. Isenberg, D. Pollack, The constraint equations for the Einstein-scalar field system on compact manifolds, Class. Quantum Grav. 24 (2007) 809-828.
[4] O. Druet, E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on a compact Riemannian manifolds, 2008, preprint.
[5] Y. Du, L. Ma, Logistic type equations on R^{N} by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. 64 (2001) 107-124, MR 2002d:35089.
[6] E. Hebey, F. Pacard, D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys. 278 (1) (2008) 117-132.
[7] J. Lee, Th. Parker, The Yamabe problem, Bull. Am. Soc. 17 (1) (1987) 37-91.
[8] R. Schoen, A report on some recent progress on nonlinear problems in differential geometry, Surveys in Differential Geometry, 1991, pp. 201-241.

[^0]: तो The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20060003002.
 E-mail addresses: 1ma@math.tsinghua.edu.cn (L. Ma), matxuxw@math.nus.edu.sg (X. Xu).

