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Abstract

Existence of blossoms is crucial for design. In a single space, we recently characterised it in terms of ready-to-blossom bases.
Such bases are magic, for their use makes existence of blossoms visible at first sight. A similar characterisation is given here for
geometrically continuous piecewise Chebyshevian splines (sections in different Extended Chebyshev spaces, connection matrices
at the knots). This enables us to re-prove the equivalence between existence of blossoms and existence of B-spline bases under the
least possible differentiability assumptions. The existing proof of the latter result was totally different and it strongly relied on the
fact that all spline sections were supposed to be C®°. To cite this article: M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

B-splines de Chebyshev et bases sur mesure pour les floraisons. Dans tout espace de splines a sections dans différents espaces
de Chebyshev généralisés et matrices de connexion, nous caractérisons 1’existence de floraisons (cruciale pour le design) par celle
de bases sur mesure définies en termes de zéros. Ce résultat nous permet d’obtenir 1’équivalence entre 1’existence de floraisons et
celle de bases de B-splines sous des hypotheses de différentiabilité aussi faibles que possible. Pour citer cet article : M.-L. Mazure,
C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée
Le théoréme suivant caractérise les espaces de splines de Chebyshev pertinents pour le design :

Théoreme 0.1. Dans tout espace S de splines géométriquement continues a sections dans différents espaces de Che-
byshev généralisés, les propriétés suivantes sont équivalentes :

(1) les floraisons existent dans S ;
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(2) P’espace S possede une base de B-splines, et il en est de méme de tout espace de splines obtenu a partir de S par
insertions de nceuds.

Cette équivalence fut établie dans [1] pour des espaces a sections C°°, hypothése qui intervenait trés fortement
dans la démonstration. Grace a la notion de bases sur mesure pour les floraisons, nous en donnons ici une toute
autre preuve qui permet de travailler sous une hypothese de différentiabilté minimum (voir Section 1). La difficulté
principale consiste dans tous les cas a montrer que, dés que les floraisons existent, elles sont pseudoaffines en chaque
variable sur leur domaine de définition. Cette propriété essentielle est a la base de tous les algorithmes de design tels
I’algorithme de Boor qui génére automatiquement une base de B-splines. Elle sera ici obtenue a partir d’une version
spline du résultat suivant (voir Th. 2.1) :

Théoreme 0.2. (Voir [2].) Soit E C C"(I) un W-espace de dimension (n + 1) (i.e., le Wronskien d’une base de E ne
s’annule pas sur I') contenant les constantes. Pour tout x € I et tout k < n, on notera W;' un élément de E qui s’annule

exactement k fois en x. Supposons que les floraisons existent dans E. Alors, pour tous entiers positifs i1, ..., Ly de
N .. . aj aj a a
somme n, et pour tous ay, . .., a € I deux a deux distincts, les fonctions 1, &, ", ..., lI/n_M_H, RO ' lI/nim_H

forment une base de E.

Rappelons que, dans le cas ci-dessus, les floraisons sont des fonctions de n variables définies géométrique-

ment sur 1" A partir d’intersections de variétés osculatrices. Considérons une fonction @ := (&', ..., '1/: ! w1
LW lI/“’ - +1) I — R". Si ses composantes forment avec la fonction constante 1 une base de E, il est facile

de vérifier que 1’1ntersect10n des variétés osculatrices de @, d’ordre (n — ;) au point a;, 1 <i < r, se réduit alors a
I’origine de R". Cette remarque montre que la réciproque du Théoreme 0.2 est évidente, ce qui justifie le qualificatif
“sur mesure pour les floraisons” que nous attribuons a de telles bases.

Dans le cas de splines dont les espaces-sections sont de dimension (n + 1), le domaine de définition naturel des
floraisons est un sous-ensemble restreint de n-uplets, dits admissibles. Seuls ces n-uplets donneront alors naissance a
de telles bases (Théoréeme 2.1).

1. The context — The result
1.1. EC-spaces and ready-to-blossom bases

Let I be a non-trivial interval and let F C C"(I) be an (n 4+ 1)-dimensional space. We say that I is a W-space on
I if the Wronskian of a basis of F does not vanish on 7. We say that F is an Extended Chebyshev space (EC-space)
on I if any non-zero element of [F vanishes at most n times in 7, counting multiplicities up to (n + 1). An EC-space
on [ is a W-space on I, the converse being false in general.

Throughout the present section we assume that [F is a given (n 4 1)-dimensional W-space on / which contains con-
stants. Choose any non-degenerate function @ = (@, ..., ®,) € F", that is, choose any n functions @1, ..., ®, € F
so that (1, @y, ..., ®,) forms a basis of F. Then @ is a mother-function of the space F, from which any function
F € ¢ (for any d > 1) can be obtained via an affine map. The osculating flat of order i (0 <i < n) at a point x € I
is the affine flat defined by the point @ (x) and the span of the i first derivatives of @ at x. We denote it by Osc; @ (x).
It is i-dimensional. We say that blossoms exist in the space T if, for any r > 1, any pairwise distinct ay,...,a, in [
and any positive integers ji1, ..., 4, summing to n, the osculating flats (Osc,,—,; @ (a;));_, intersect at a single point.
The blossom ¢ of @ is then the symmetric function

.
o=(01,...,00): 1" — R", {(p(agl“], .. .,a}“’J)} = ﬂOscn_,M D (a;), (D
i=1

where, for any ¢ € R and any non-negative integer k, !X stands for a k-fold repetition of the point 7. The blossom of
any F € F? is then obtained from ¢ via the affine map applying ® on F.

For each x € I, and each integer k, 0 < k < n, one can choose a function l]’,f € [F which vanishes exactly k times
at x.
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Definition 1.1. Assume that, up to permutation, a given n-tuple (xi,...,x,) € I" is equal to (aE“'],...,ayL’]),

with positive integers ui, ..., u, and pairwise distinct ay,...,a,. Then, if the sequence (1, 138 ‘,...,llffi w1

(1A | /A lI/,fLMrH) forms a basis of F, we say that it is a ready-to-blossom basis relative to (x1, ..., X,).
The use of a mother-function derived from a ready-to-blossom basis relative to the n-tuple (a EM 1], e, a£“ ’]) makes

it obvious that the intersection (1) reduces to a single point. This justifies our terminology. In [2] we proved the
following result:

Theorem 1.2. Let F be an (n + 1)-dimensional W-space on I, containing constants, with n > 2. The following
properties are equivalent

(1) blossoms exist in IF,
(2) the space DF :={DF := FV := F' | F € F} is an (n-dimensional) EC-space on I

(3) the space F possesses ready-to-blossom bases relative to any n-tuple (x1,...,x,) € I".
Assume that blossoms exist in F. Then, in any ready-to-blossom basis relative to a given (xy, ..., x,) € I", the first
coordinate of any F € F is the value f(x1,...,x,) of its blossom f at (x1,...,x,). Furthermore, for any pairwise
distinct ay, ..., ar € I and any positive integers |1, ..., [y such that ZLI i < n, we have
/ ay/’ / ar!
W(W;‘l AU llfnlMH_l, Wnaz,, R/ lllnim_i_l)(x) #0, forallxel\{as,...,a}. 2)

Note that when n = 1, (1) is always satisfied, while we still have (2) < (3).
1.2. Spline spaces, B-spline bases, and blossoms
Suppose that n > 2 is given. Let us start with

— a bi-infinite sequence of knots #, k € Z, satisfying #x < x4 for all k;

— a bi-infinite sequence of associated integers my, k € Z, satisfying 0 < my < n for all k: my is the multiplicity of
the knot #;;

— a bi-infinite sequence of connection matrices My, k € Z: for each k, My, is a square matrix of order n — my which
is lower-triangular and which has positive diagonal elements;

— abi-infinite sequence of section spaces [, k € Z: for each k, E; C C" ([#, tx+1]) contains constants and the space
DE; :={DF := F'| F € E;} is an n-dimensional EC-space on [y, fr+1].

The first two ingredients give birth to the knot vector K := (%), 7. Based on the latter data, we consider
the set S of all geometrically continuous piecewise Chebyshevian splines, i.e., all continuous functions S: [ :=
1Infrez tk, Supy ez tk[ — R such that

(1) for each k € Z, the restriction of S to [#, #x+1] belongs to Eg;
(2) for each k € Z, the following connection condition is fulfilled

(SU)(t,j), L §e=mo (t]:r))T =M, - (5(1)(%—)7“_7S(nfmk)(,k—))T.

The spline space S contains constants. It is essential to guarantee existence of B-splines in S, defined as below. From
now on, for the sake of simplicity, we assume the knot vector K to be bi-infinite, and we also denote it as K = (§¢)c7z.
Other cases would require slight changes in the definition below (see [1]):

Definition 1.3. We say that a sequence Ny, £ € Z, of elements in the spline space S is the B-spline basis of S when it
meets the following requirements:

(BSB)| (support property) for each € € Z, supp N¢ = [&¢, Ep4n+1];
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(BSB), (end-point property) for each £ € Z, N, vanishes exactly n — s + 1 times at & and exactly n — s" + 1 times
at &g pq1, where s :={j > €| &; =&} and s" :={j <lA+n+1]& =& nr1);

(BSB)3 (positivity property) for each £ € Z, Ny is positive in the interior of its support;

(BSB)4 (normalisation property) Y, Ne(x) =1forall x € I.

The possible existence of blossoms in the spline space S can be more easily perceived with the help of a relevant
(n + 1)-dimensional linear space [E contained in S. As is classical, we complete each connection matrix My into a
lower triangular matrix M, or order n, with positive diagonal elements. The space E is then composed of all splines
S €S which satisfy the stronger connection conditions:

(sV(h), ..., S(”)(t,j))T =My (SV(17), ..., 5™ (tk_))T’ ke,

Choose a mother-function @ := (@1, ..., ®,) € E". Due the nature of the connection matrices, for any x € I, and for
0 <i < n, the osculating flat Osc; @ (x) is always well defined, with the meaning of either Osc; @ (x ™) or Osc; @ (x )
when x is a knot #; (see [1]). The main difference between the non-spline case of a single space and the spline case
is in the domain of definition of blossoms: while in the former case blossoms are defined on the whole of 1", in the
latter case their natural domain of definition is the set A, (K) of all admissible n-tuples (relative to the knot vector K),

A (K) = {(xl,...,xn) € I" | Vi € Z: min(xy, ..., x,) <t; <max(xy,...,X;)
= t; appears at least m; times among (x1, ..., xn)}. 3)
We say that blossoms exist in the spline space S if, for any pairwise distinct ay, ..., a, in I and any positive integers
U1, ..., 1y such that Z?:l wi = n and such that the n-tuple (aE’“], e aiu’]) is admissible (i.e., it belongs to A, (K)),

the osculating flats (Osc,—,; @(a;));_, intersect at a single point. The blossom of the spline @ € S" is then the
symmetric function ¢ defined as in (1), but now only on the symmetric set A, (K). To see how to deduce the blossom
of any spline S € S from ¢ via affine maps, we refer to [1].

Consider another spline space S defined on I, with (n 4+ 1)-dimensional section spaces, and let K denote its knot
vector. Then, S contains S if and only if any knot #; appears in K with a multiplicity greater than or equal to my, and
the section spaces for S are restrictions of those of S. It is why S is said to be obtained from S by knot insertion. We
shall prove the following result, already proved in [1] under the assumption E; C C*°([#, tx+1]) for all k € Z. This
will be done via a spline version of Theorem 1.2 which is of interest in itself (see Section 2).

Theorem 1.4. In the spline space S described above, the following two statements are equivalent:

(1) blossoms exist in S;
(2) there exists a B-spline basis in S and in any spline space derived from S by knot insertion.

2. Ready-to-blossom bases and existence of blossoms in S

Throughout this section we are in the situation described in Section 1.2. For each x € I, and each integer &,
0 < k < n, one can choose a function lI/kx € E which vanishes exactly k times at x. This is due both to the fact that
each space Ey is an EC-space on [#, fx+1] and to the structure of all matrices A?k. One can thus define possible ready-
to-blossom bases in E similarly to Definition 1.1. For any integer p > 1, we define the set A, (K) of all admissible
p-tuples similarly to (3). For any p-tuple (x1,...,x,) € A,(K) we denote by J(x1,...,x,) the set of all x € I
such that (x1, ..., x,, x) is admissible (i.e., it belongs to A, 1(K)). It is a non-empty union of consecutive intervals
[k, tx+1]. For all possible difficulties concerning either the use of admissible tuples, or the presence of connection
matrices (which explains the ¢ = &£ in (4) below, in case x is a knot #; ), we refer the reader to [1].

Theorem 2.1. In the spline space S the following two statements are equivalent:

(1) blossoms exist in S;
(2) the space E possesses ready-to-blossom bases relative to any n-tuple (x1, ..., x,) € A, (K).
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Assume that blossoms exist in E. Then, in any ready-to-blossom basis relative to any given (xi, ..., x,) € A, (K),
the first coordinate of any F € E is the value f(xy,...,x,) of its blossom f at (x1,...,x,). Furthermore, for any
pairwise distinct ay, ...,ar € I and any positive integers (1, ..., [ty such that p := Y i_, i <n, if the p-tuple
(x1,...,xp) = (q ’“] [”’ ) is admissible, we have

W e ) () #0,

w(gn, ... e

ar
e L

:LurJ'_l)(xs) #0 forallx € J(x1,...,xp) \{ai,...,a}. 4)

Proof. Let u1, ..., i, be positive integers such that p := Zl 1 #i < n. Choose any pairwise distinct ag, ..., a, € 1

such that the p-tuple (x1,...,xp) 1= (a%’“], .. [”’]) is admissible. For simplicity we denote by (@1, ..., @) the

sequence W, Wf: w +1). Assume that 1, <151, ..., @, are linearly independent. Observe that this does hold in
case r = 1 by application of Theorem 1.2 in some space Ek. Select any (n — p) functions @41, ..., P, € Eso as to
obtain a mother-function @ = (@1, ..., P, Ppi1, ..., P,) in the space E. This choice makes it easy to check that

.
A(X1, ..y Xp) :=mOscn_m[<D(ai)={X:(Xl,...,X,,)eR"|X1 =..=X,=0}.
i=1

Suppose for a while that p = n. Then, A(x1, ..., x,) reduces to the origin of R". This proves that (ii) = (i). Moreover,
via affine maps, this also proves our assertion about the first coordinate of any F € E in the ready-to-blossom basis
@, @1,...,P,).

From now on, assume that p < n and that blossoms exist in S. Once and for all, we select an integer j
such that [¢;,7;11] C J(x1,...,xp) and a non-trivial interval T contained in [tj,tj+1]1 \ {a1, ..., ar}. Choose any
x € 1. Existence of blossoms in S implies that the point (p(xl,...,xp,x["’f’]) is well defined. It is the only
point X = (X¢,..., X,;) € R" which belongs both to Osc, ®(x) and to A(xy,...,xp). Therefore, we have X =
D(x)+ Zf’zl 1i (x)®@® (x), where the coefficients A (x), ..., A p(x) are uniquely determined by the p equations

p .
Y @) =-d;x), j=1....p. (5)

i=1

Note that if ever x =¢; (resp. x =tj41), x is to be interpreted as t;r (resp. tjjrl) everywhere in each left-
hand side of (5). Subsequently, whenever necessary we shall adopt a similar convention. The system (5) be-
ing unisolvent, we have W(®7,...,d’ ) (x) # 0. Accordingly, for 0 < s <n — p — 1, the function y € T+
W@, &y,...,0,,¥7 p +1)(y) vamshes exactly j times at x (see Lemma 24 of [2]). The latter (n — p) functions
are thus linearly 1ndependent The functions 1, @1, ..., @, being linearly independent, it readily follows that so are
the (n + 1) functions 1, @y, ..., P,, ¥, ..., lI/;f 1 We thus have proved (ii) by induction on the number of pairwise
distinct points involved, along w1th the first part of (4).

Let us now prove the second part of (4). It does hold for » = 1 by application of (2) in some EC-space E;. With
the same data, notations, and convention as above, assume that W (®q, . o ®,)(x) #0 forall x € T with p<n —2
(otherwise we have finished). This guarantees that the C" ™7 function X, : I — R never vanishes. Consider the function

-~

a(x) = (0,...,0, $p+1,...,$n) :=g0(x1, ...,xp,x["fp]), xel.

By repeated differentiation of the equality @ (x) = @ (x)+ 3 P 2i(x)®@ @ (x), one can thus deduce that, for any x € 2

the vectors @’ x),..., @n=p) (x) are linearly independent and that, for 0 < g < n — p, the (therefore g-dimensional)
osculating flat Osc,; @ (x) is contained in Oscy4, @ (x) N A(x1, ..., xp). From (5) one can check that the intersection
Oscyqp @(x) N A(x1, ..., xp) is g-dimensional too. Accordingly,

Oscy ®(x) =O0scyyp P(X) NA(xy,...,x,) forallxel, 0<g<n—p. (6)
By standard arguments, one can then derive that, for any pairwise distinct by, ...,bs € 7T and any positive in-

tegers Vvi,..., Vs summing to n — p, the s osculating flats Osc,_,_y, ;Z;(bi) have in common the only point
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w(ag '], [’"],b[‘”] b[‘“']) Let E be the linear space spanned on Tby all functions f(x) = f(x1,...,
Xp , x[n= P]) F ranging over E. For any F € E, we know that F' (x) is the coordinate of F in any first ready-to-blossom
ba51s relative to (xq, ..., Xp, x[*=P1)_ This implies that, for any x € I

F(xX)=W(F,®1,...,0,)(x)/ W, ®y,...,®,)(x) = W(F, Dy, Pp) (X)W (Py, ..., D) (X). 7

From the statements above, we know that  is an (n — p 4+ 1)-dimensional W-space on 7 in which blossoms exist.
Select a,+1 € I. By application of (7) and Lemma 24 of [2], for p + 1 < k < n, the function ¥} Zr+1 vanishes exactly

k — p times at a, 1. Applying (2) in the EC-space E ensures that W(llfu”rl ey a’“) does not vamsh onl \ {ar+1}-
Sodoes W(Wy, ", ... W™, where Wy := W(Dy, ..., D, ¥ ). Lemma 20 of [2] tells us that

W@, L)) = [W(cbl,...,zp,,)(x)]”*" W(Pr, ..., @, &, @) (). (8)
This shows that W(®y, ..., @), lI/“’“ . l1/”’“) never vanishes on T\ {a,+1}. The proof is actually complete, due to
the following remark. Givenr > 1,and a; <apy <--- <a, <ay41in [, if (agu '], . y_i’l* l]) is admissible, then both
(a [’“], a1y and (a “2], . .,al’i’f‘]) are admissible and j(a[’”], ey ayfr’fl]) is the union of j(a[’“], . ath
and j(az’”], . aﬁ‘;’f”). O

3. Proof of Theorem 1.4

We shall just give a condensed proof of Theorem 3.1 below via ready-to-blossom bases and under the least possible
differentiability assumption. It is at the root of all design algorithms for splines, e.g., the de Boor evaluation algorithm
which naturally produces B-spline bases. It is also the major difficulty in the proof of Theorem 1.4, the remaining part
being similar to that in [1] which we refer the reader to.

Theorem 3.1. Assume that blossoms exist in S. Then, they are pseudoaffine in each variable, in the sense that, for

any (x1,...,xy—1) € An_1(K), the function ¢(x1,...,Xxn—_1,.) — which takes its values in an daffine line — is strictly
monotone on any interval J such that x,y € J = (x1, ..., Xy—1,%,y) € Ap+1(K).

Proof. If (xy,...,x,_1) = (ag“ '], .. [“ ’]) (positive w;, pairwise distinct a;), it is sufficient to prove the strict
monotonicity on the largest interval J1 C J \ {a2,...,a,} which contains a;. Choose a ready-to-blossom basis
(1, Dy, ..., D,) relative to (xq,...,x,-1,a1), and consider the associated mother-function @ = (&1, ..., D,). It is
sufficient to prove that ¢, := ¢, (xq, ..., xXy—1,.) is C I and strictly monotone on Ji, with therefore @, := nalm.
From (7) and (4) we can see that @, is C' on J; \ {a1}. Moreover, Lemma 17 of [2] ensures that, for any x € J; \ {a1},

7o) = ("Wt ... Du )OO W(D], ... Dy, D) @)/ [W(D, ... @) ()]

Accordingly, (4) shows that @, (x) # 0 on J; \ {a;}. Lemma 31 of [2] enables us to say how each of the latter
Wronskians behave close to aj. ThlS eventually shows that @/, (x) — C, when x — af 1 in Ji \ {a1}, for some non-zero
C. € R. Suppose that a; is interior to Ji. If aj is not a knot, then C_ = C.. Otherwise, use Lemma 49 of [2] to show
that C_ and C; have the same strict sign. One can similarly prove that @, (x) ~ C.(x — ay) for x € Ji \ {a;} close
to a;. The proof is complete. O
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