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Abstract

We consider the heat equation with fast oscillating periodic density, and an interior control in a bounded domain. First, we prove
sharp convergence estimates depending explicitly on the initial data for the corresponding uncontrolled equation; these estimates
are new, and their proof relies on a judicious smoothing of the initial data. Then we use those estimates to prove that the original
equation is uniformly null controllable, provided a carefully chosen extra vanishing interior control is added to that equation. This
uniform controllability result is the first in the multidimensional setting for the heat equation with oscillating density. Finally, we
prove that the sequence of null controls converges to the optimal null control of the limit equation when the period tends to zero.
To cite this article: L. Tebou, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Contrôlabilité à zéro uniforme de l’équation de la chaleur avec densité périodique rapidement oscillante. Nous considé-
rons l’équation de la chaleur avec densité périodique rapidement oscillante, et un contrôle interne dans un domaine borné. Nous
établissons d’abord des estimations fines de convergence dependant explicitement de la donnée initiale pour l’équation non contrô-
lée ; ces estimations sont nouvelles, et leur démonstration repose sur une régularisation judicieuse de la donnée initiale. Puis nous
utilisons ces estimations pour démontrer que l’équation initiale est uniformément contrôlable à zéro, pourvu q’un contrôle interne,
supplémentaire, evanescent, et convenablement choisi, soit ajouté à cette équation. Ce résultat de contrôlabilité uniforme est le
premier dans le cadre multidimensionnel pour l’équation de la chaleur avec densité rapidement oscillante. Enfin nous montrons
que la suite des contrôles converge vers le contrôle à zero optimal de l’équation limite lorsque la période tend vers zéro. Pour citer
cet article : L. Tebou, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On considère le problème de la contrôlabilité à zéro uniforme de l’equation de la chaleur avec densité périodique
rapidement oscillante (voir (6)–(8) ci-après). On pose Dε = uε − u, où uε et u sont les solutions de (10) et (11)
respectivement. On établit les résultats suivants :
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Théorème 1. i) Il existe une constante positive C telle que pour tous u0 ∈ H 1
0 (Ω), et ε ∈ (0,1), on ait :

‖Dε‖C([0,T ];L2(Ω)) + ‖Dε‖L2(0,T ;H 1
0 (Ω)) � Cε

1
2
∥∥u0

∥∥
H 1

0 (Ω)
. (1)

j) Il existe une constante positive C telle que pour tous u0 ∈ L2(Ω), et ε ∈ (0,1), on ait :∥∥(T − t)Dε

∥∥
C([0,T ];L2(Ω))

+ ∥∥(T − t)Dε

∥∥
L2(0,T ;H 1

0 (Ω))
� Cε

1
3 ‖u0‖L2(Ω),

‖Dε‖L2(Q) � Cε
1
3 ‖u0‖L2(Ω). (2)

Théorème 2. Il existe une constante positive C telle que pour tous u0 ∈ L2(Ω), et ε ∈ (0,1), on ait :

∫
Ω

∣∣uε(x,0)
∣∣2 dx � C

T∫
0

∫
ω

u2
ε dx dt + Cε

2
3

∫
Q

|∇uε|2 dx dt. (3)

Théorème 3. Soit ω un ouvert non vide quelconque dans �. Alors, pour tous T > 0, ε ∈ (0,1), et y0 ∈ L2(Ω), il
existe un contrôle vε = v1εχω + v2ε avec v1ε ∈ L2(0, T ;L2(ω)), et v2ε ∈ L2(0, T ;H−1(Ω)), tel que la solution yε

de « (6) » vérifie (7).
De plus, il existe une constante positive C indépendante de y0 ∈ L2(Ω), et ε ∈ (0,1) telle que :

T∫
0

∫
ω

v2
1ε dx dt + ε

2
3

∫
Q

|∇Gv2ε|2 dx dt � C

∫
Ω

∣∣y0(x)
∣∣2 dx, (4)

où G est l’inverse de −� avec les conditions aux limites de Dirichlet, et

v1ε → v dans L2(0, T ;L2(ω)
)

fort, v2ε → 0 dans L2(0, T ;H−1(Ω)
)

fort, (5)

où v est le contrôle optimal du système limite.

1. Problem formulation and statements of main results

Let Ω be a bounded smooth open subset of R
N , N � 1, and let T be a positive real number. Set Y = (0,1)N ,

and Q = Ω × (0, T ). Let ρ ∈ L∞
per(R

N) be 1-periodic in every direction, with: ρ0 � ρ(y) � ρ1, for almost every y

in Y , where ρ0 and ρ1 are positive constants. Set ρ̄ = ∫
Y

ρ(y)dy. Let ε ∈ (0,1) be a small parameter. Consider the
following controllability problem: Given y0 ∈ L2(Ω), can we find a control function vε ∈ L2(0, T ;L2(ω)) such that
if yε solves{

ρ(x/ε)yεt − �yε = vε in Ω × (0, T ),

yε = 0 on ∂Ω × (0, T ); yε(x,0) = y0(x) in Ω,
(6)

where ω is an arbitrary nonempty open subset of Ω , then

yε(x,T ) = 0 a.e. in Ω? (7)

If the answer to this first question is positive, the natural next question is: (χω denoting the characteristic function
of ω), does the sequence of controls (vε) converge in some reasonable topology to a control v of the limit system
[2,3]: {

ρ̄yt − �y = vχω in Ω × (0, T ),

y = 0 on ∂Ω × (0, T ); y(x,0) = y0(x) in Ω?
(8)

Concerning the first question, the use of a duality argument shows that solving that controllability problem amounts
to proving the observability estimate:

∫ ∣∣uε(x,0)
∣∣2

dx � C0

T∫ ∫
u2

ε dx dt (9)
Ω 0 ω
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for every solution of the backward system:{
ρ(x/ε)uεt + �uε = 0 in Ω × (0, T ),

uε = 0 on ∂Ω × (0, T ); uε(., T ) = u0 ∈ L2(Ω),
(10)

where C0 is a positive constant that is independent of u0, but that may eventually depend on ε.
Since we are interested in letting ε go to zero, we want to ensure that either C0 is independent of ε, or else the

dependence with respect to ε is explicitly known. If the function ρ is smooth enough, then using Carleman estimates
(e.g. [5,6]), one can show that estimate (9) holds, and the dependence of C0 with respect to ε may be made explicit.
However, the estimate obtained in this way is worthless, because the sequence of controls will diverge exponentially
in L2(0, T ;L2(ω)). It then makes sense to commend the earlier work [9]; in fact, in the one-dimensional setting, its
authors were able to establish a uniform boundary controllability result; their method consists in: differentiating low
frequencies from high frequencies, use biorthogonal series method [4] to establish a uniform observability estimate
for low frequencies, and utilize Carleman estimate for high frequencies, then use a three-step control method, which
consists in dividing the time interval in three subintervals, and apply an appropriate control in each subinterval. The
method of [9] that we have just roughly described is essentially one-dimensional. So is the method devised in [1] to
solve the null controllability problem for parabolic equations with only bounded measurable coefficients; the method
of [1] if applied to parabolic equations with fast oscillating coefficients improve the result of [9].

The methods used in [1,9] critically rely on some special changes of variables that hold in the one-dimensional
setting only. Therefore a completely new approach has to be built up to prove a uniform controllability result for
higher dimensional heat equation with fast oscillating density. To cope with this situation, we are going to essentially
rely on the observability estimate for the limit equation:{

ρ̄ut + �u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ); u(., T ) = u0 ∈ L2(Ω).
(11)

At this point, the natural question that comes to mind is: how is the use of the observability inequality for (11) going
to work out to produce the uniform controllability result that we aim at? To answer this question, we observe that for
some positive constant C that is independent of ε and u0, one has:

∫
Ω

∣∣uε(x,0)
∣∣2 dx � C

T∫
0

∫
ω

u2
ε dx dt + C

T∫
0

∫
ω

|uε − u|2 dx dt + 2
∫
Ω

∣∣uε(x,0) − u(x,0)
∣∣2 dx. (12)

Consequently, if one can precisely estimate the rate of convergence of uε to u in terms of ε and u0, then one may
derive a uniform observability estimate, that is weaker than (9) though. For the sequel we set

Dε = uε − u.

Our main results read:

Theorem 1.1. i) There exists a positive constant C such that for every u0 ∈ H 1
0 (Ω), and ε ∈ (0,1), one has:

‖Dε‖C([0,T ];L2(Ω)) + ‖Dε‖L2(0,T ;H 1
0 (Ω)) � Cε

1
2
∥∥u0

∥∥
H 1

0 (Ω)
. (13)

j) There exists a positive constant C such that for every u0 ∈ L2(Ω), and ε ∈ (0,1), one has:
∥∥(T − t)Dε

∥∥
C([0,T ];L2(Ω))

+ ∥∥(T − t)Dε

∥∥
L2(0,T ;H 1

0 (Ω))
� Cε

1
3
∥∥u0

∥∥
L2(Ω)

,

‖Dε‖L2(Q) � Cε
1
3
∥∥u0

∥∥
L2(Ω)

. (14)

Theorem 1.2. There exists a positive constant C such that for every u0 ∈ L2(Ω), and ε ∈ (0,1), one has:

∫
Ω

∣∣uε(x,0)
∣∣2 dx � C

T∫
0

∫
ω

u2
ε dx dt + Cε

2
3

∫
Q

|∇uε|2 dx dt. (15)
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Theorem 1.3. Let ω be any nonempty open subset of Ω . Then for all T > 0, ε ∈ (0,1), and y0 ∈ L2(Ω), there exists
a control function vε = v1εχω + v2ε with v1ε ∈ L2(0, T ;L2(ω)), and v2ε ∈ L2(0, T ;H−1(Ω)), such that the solution
yε of ‘(6)’ (observe that χω should be dropped in (6), whence the quotes) satisfies (7).

Further, there exists a positive constant C independent of y0 ∈ L2(Ω), and ε ∈ (0,1) such that:

T∫
0

∫
ω

|v1ε|2 dx dt + ε
2
3

∫
Q

|∇Gv2ε|2 dx dt � C

∫
Ω

∣∣y0(x)
∣∣2 dx, (16)

where G is the inverse of −� with Dirichlet boundary conditions, and

v1ε → v in L2(0, T ;L2(ω)
)

strongly, v2ε → 0 in L2(0, T ;H−1(Ω)
)

strongly, (17)

where v is the optimal null control for the limit equation (8).

Remark 1.4. It would have been great to have the utmost right term in (15) dropped; this would have led us to a
uniform observability estimate in the standard form. But unfortunately, we were not successful in ridding ourselves of
that additional term; this is the reason why an extra, and fortunately vanishing, control is needed in our approach. We
also note that the structure of the control vε is not the one shown in (6); remember that we were looking for a control
located in ω, but we found a control that breaks down into two compounds; namely v1ε that has the desired location,
and v2ε that is distributed everywhere in the domain, and which vanishes as ε goes to zero.

Remark 1.5. The regularizing property of the heat equation is exhibited in estimate (14). In fact a similar estimate
does not hold for the wave equation for which the state at all time and the initial data have the same smoothness. So
our method will fail if attempted for the wave equation with fast oscillating density, or any other evolution system
with rapidly oscillating coefficients and no smoothing property. Thus for that class of equations, we have to content
ourselves, at the present time, with the uniform observability result at low frequency [7]. However, the technique to
be sketched below would succeed for perturbed equations that do exhibit smoothing property; more on this in our
upcoming paper [11]. We should also note that the property of establishing a uniform controllability result by adding
an extra vanishing control is now well known for discretized systems (see e.g. [14]).

Before proceeding to sketching the proofs of the stated theorems, we want to specify that Theorem 1.2 being a
straightforward consequence of Theorem 1.1, j), and (12), its proof will be omitted. From now on, C denotes various
positive constants that may eventually depend on T , ρ, ω, and Ω , but not on ε or the initial data involved, and we set
ρε(x) = ρ(x/ε).

2. Sketch of the proof of Theorem 1.1

The proof of Theorem 1.1 critically relies on the following result:

Lemma 2.1. 1) (See [10].) There exists a positive constant C such that for all w,z ∈ H 1(Ω), one has:∣∣∣∣
∫
Ω

(
ρ̄ − ρ(x/ε)

)
(wz)(x)dx

∣∣∣∣ � Cε‖w‖H 1(Ω)‖z‖H 1(Ω). (18)

2) Let u0 ∈ L2(Ω). There exists u0
ε ∈ H 2(Ω) ∩ H 1

0 (Ω) such that
∥∥u0

ε

∥∥
H 1

0 (Ω)
� Cε− 1

3
∥∥u0

∥∥
L2(Ω)

,
∥∥u0

ε

∥∥
H 2(Ω)

� Cε− 2
3
∥∥u0

∥∥
L2(Ω)

,

∥∥u0
ε − u0

∥∥
H−1(Ω)

� Cε
1
3
∥∥u0

∥∥
L2(Ω)

, u0
ε → u0 in L2(Ω) strongly. (19)

3) Let u0 ∈ H 1
0 (Ω). There exists w0

ε ∈ H 2(Ω) ∩ H 1
0 (Ω) such that

∥∥w0
ε

∥∥
H 2(Ω)

� Cε− 1
2
∥∥u0

∥∥
H 1

0 (Ω)
, w0

ε → u0 in H 1
0 (Ω) strongly,

∥∥w0
ε − u0

∥∥
L2(Ω)

� Cε
1
2
∥∥u0

∥∥
H 1

0 (Ω)
. (20)
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Assertion 1) of Lemma 2.1 follows from [10, Lemma 1.6, p. 8]. To prove the assertions 2) and 3) of Lemma 1.6, one
introduces appropriate perturbed elliptic problems in the spirit of Lions work on singular perturbations [8, Chap. 2].

To prove Theorem 1.1, i), one introduces the functions wε , and zε solutions of (10) and (11) respectively, with
wε(T ) = w0

ε and zε(T ) = w0
ε . Then one sets Rε = uε − wε , Sε = wε − zε , and Kε = zε − u, and write down the heat

equation satisfied by each of those functions. It follows from Lemma 1.6, 1) and 3), and the energy method that each
of the functions Rε , Sε , and Kε satisfies (13); from which we derive that Dε = uε − u also satisfies (13). To prove the
lower inequality of (14), we proceed exactly the same way, but now using Lemma 1.6, 1) and 2), while the proof of
the upper inequality relies on the lower inequality, and the smoothing property of the heat equation. �
3. Sketch of the proof of Theorem 1.3

Introduce the functional

Jε :L2(Ω) −→ R,

u0 �→ Jε

(
u0) = 1

2

T∫
0

∫
ω

∣∣uε(x, t)
∣∣2 dx dt + ε

2
3

2

∫
Q

|∇uε|2 dx dt +
∫
Ω

y0(x)uε(x,0)dx, (21)

where uε is the solution of (10) associated with u0. Thanks to Theorem 1.2, one can show that Jε is coercive. Further,
Jε is strictly convex, and continuous. Therefore, Jε has a unique minimizer û0

ε , and if ûε is the associated solution
of (10), then we have the Euler equation:

T∫
0

∫
ω

ûε(x, t)u(x, t)dx dt + ε
2
3

∫
Q

∇ûε(x, t) · ∇u(x, t)dx dt +
∫
Ω

y0(x)u(x,0)dx = 0, (22)

for every u solution of (10).

Choosing the control vε by: vε = ûεχω − ε
2
3 �ûε , it is fairly simple to check, thanks to (22), that yε , the corre-

sponding solution of (6) satisfies (7); so vε is a null control for (6). Using (22), and Theorem 1.2, one derives (16).
Adapting the arguments develop in [9,12], one proves the claimed convergence results. �
Final Remark. Since the integral

∫
Q

|∇uε|2 dx dt is equivalent to the L2(Ω)-norm of the initial data in (10); our
approach shows how to choose the functional to be minimized (in the approximate controllability problem) in order to
pass to the limit with ε in the uniform approximate controllability result of [13] to get a null (instead of an approximate)
controllability result for the homogenized equation; thus with our method, we can improve the result of [13].
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