Dynamical Systems/Probability Theory

Some optimal pointwise ergodic theorems with rate

Christophe Cuny

Université de la Nouvelle-Caledonie, Équipe ERIM, B.P. R4, 98800 Nouméa, New Caledonia

Received 15 February 2009; accepted 29 April 2009
Available online 3 June 2009
Presented by Wendelin Werner

Abstract

Let T be a Dunford–Schwartz operator on the probability space (X, Σ, μ) and $p > 1$. For f in the range of suitable operators of $L^p(X, \Sigma, \mu)$, we obtain pointwise ergodic theorems with rate, using a method of Derriennic and Lin (2001). When T is induced by a μ-preserving transformation, these results are shown to be optimal. The proof of the optimality is inspired from a construction of Déniel (1989).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit T un opérateur de Dunford–Schwartz sur l’espace de probabilité (X, Σ, μ) (i.e. T contracte chaque espace $L^r(X, \mu)$, $1 \leq r \leq \infty$). Pour $\alpha \in [0, 1]$, Derriennic et Lin [5] ont utilisé le développement en série entière $(1 - t)^\alpha = 1 - \sum_{n \geq 1} a_n t^n$, où $a_n = a_n(\alpha) > 0$ et $\sum_{n \geq 1} a_n = 1$, pour définir l’opérateur $(I - T)^\alpha$ sur $L^p(X, \mu)$, par

$$(I - T)^\alpha = I - \sum_{n \geq 1} a_n T^n.$$

Pour $f \in (I - T)^\alpha L^p(X, \mu)$, des théorèmes ergodiques ponctuels avec vitesse sont établis dans [5]. Cette approche a ensuite été développée par Zhao et Woodroofe [10], puis dans [3], en considérant des séries entières plus générales. Dans ces derniers travaux, le seul cas $p = 2$ a été traité, en raison des applications en vue. Dans cette note nous montrons que la méthode s’applique aisément à tout $p > 1$. Puis, nous montrons que les vitesses de convergence

✩ Research partially carried out at Ben-Gurion University, supported by its Center for Advanced Studies in Mathematics.
E-mail address: cuny@univ-nc.nc.

1631-073X/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
obtenues dans le théorème ergodique ponctuel sont, en un certain sens, optimales. Les résultats sont particulièrement précis dans le cas \(p = 2 \). La preuve de l’optimalité s’inspire d’une construction due à Déniel [4]. Par exemple, en corollaire nous obtenons

Théorème. Soit \((X, \Sigma, \mu, \theta)\) un système dynamique (non nécessairement ergodique). Si \(f \in L^2(X, \mu) \) satisfait

\[
\sum_{n \geq 2} \log n (\log \log n)^{1+\varepsilon} \frac{\|f \circ \theta^n + f \circ \theta^{n+1}\|_2^2}{n^r} < +\infty, \text{ pour } \varepsilon > 0, \text{ alors}
\]

\[
\frac{1}{n} \sum_{k=1}^{n} f \circ \theta^k \xrightarrow{n \to +\infty} 0 \quad \mu\text{-a.s.}
\]

Par contre, sur tout système dynamique ergodique, inversible et non atomique \((X, \Sigma, \mu, \theta)\), il existe \(f \in L^2(X, \mu) \) (centrée), satisfaisant la condition \(\sum_{n \geq 2} \log n \log \log n \frac{\|f \circ \theta^n + f \circ \theta^{n+1}\|_2^2}{n^r} < +\infty \), mais telle que \(\limsup_{n \to +\infty} \frac{1}{\sqrt{n}} \times |\sum_{k=1}^{n} f \circ \theta^k| = +\infty \) \(\mu\)-a.s.

1. **Introduction**

 Let \(T \) be a Dunford–Schwartz operator on the probability space \((X, \Sigma, \mu)\) (i.e. \(T \) is a contraction of each \(L^r(X, \mu) \), \(1 \leq r \leq \infty \)). For \(0 < \alpha < 1 \), Derriennic and Lin [5] used the power series expansion \((1 - t)^\alpha = 1 - \sum_{n \geq 1} a_n t^n\), where \(a_n = a_n(\alpha) > 0 \) and \(\sum_{n \geq 1} a_n = 1 \), to define the operator \((I - T)^\alpha\) on \(L^p(X, \mu) \) by

\[
(I - T)^\alpha = I - \sum_{n \geq 1} a_n T^n.
\]

For \(p > 1 \) and \(f \in (I - T)^\alpha L^p(X, \mu) \), pointwise ergodic theorems with rate were obtained in [5]. In this note we use generalized power series of operators (as in Zhao–Woodroofe [10] or [3]) to obtain more precise rates. Moreover, inspired by a construction of Déniel [4], we show the optimality of the obtained rates.

2. **The results**

 Let \(b \) be a slowly varying function (as in Zygmund [11, p. 186]) and fix \(\alpha \in [0, 1[\). We consider the series \(B(z) := \sum_{n \geq 1} \beta_n z^n \), where \(\beta_n = \frac{C}{n} \sum_{k \geq n} \frac{b(k)}{k^{1 + \alpha}} \) (notice that \(\sum_{k \geq n} \frac{b(k)}{k^{1 + \alpha}} \sim C \frac{\alpha n}{\alpha n^{\alpha}} \)), and \(C \) is such that \(\sum_{n \geq 1} \beta_n = 1 \). The series defining \(B(z) \) is absolutely convergent on \(\overline{D} \) \((D := \{ z \in \mathbb{C} : |z| < 1 \})\) and defines a continuous function on \(\overline{D} \), analytic on \(D \). Moreover, \(B(z) \) is a (strict) convex combination of complex numbers of \(\overline{D} \), hence \(B(z) = 1 \Leftrightarrow z = 1 \) and the function \(A(z) := 1/(1 - B(z)) \) is well defined, continuous on \(\overline{D} - \{ 1 \} \), analytic on \(D \). So, there exists \(\{a_n\}_{n \in \mathbb{N}} \subset \mathbb{C} \), such that

\[
A(z) = \sum_{n \geq 1} a_n z^n \quad \forall z \in D.
\]

For a power bounded operator \(T \) on a Banach space \(B \), the operator \(B(T) := \sum_{n \geq 1} \beta_n T^n \) is well-defined. Define also \(A_n(T) := \sum_{k=0}^{n} a_k T^k \), \(n \in \mathbb{N} \). For a given \(T \) we denote \(B = B(T) \) and \(A_n = A_n(T) \).

For \(f \in B \) such that \(\{A_n f\} \) converges in \(B \), we denote by \(A(f) \) its limit and say that \(A(f) \) converges. The following is proved in [2] or [5] for some special cases:

Proposition 2.1. Let \(T \) be a power bounded operator on a Banach space \(B \). If \(f \in B \) is such that \(A(f) \) converges in \(B \), then \(f \) and \(h := A(f) \) are in \((I - T)^\alpha B \) and satisfy \(f = (I - B)h \).

Conversely, if \(f \in (I - B)(I - T)^\alpha B \), then \(A(f) \) converges.

In the sequel, \(T \) will be a Dunford–Schwartz operator on \((X, \Sigma, \mu)\) and \(B \) will be \(L^p(X, \mu) \), with \(p > 1 \). In order to find conditions for the convergence of \(A(f) \) we need the following, proved in [3] for \(\alpha = 1/2 \):

Proposition 2.2. Let \(A \) be as above. Then \(a_n > 0, \forall n \geq 0 \), and there exist \(L_\alpha, K > 0 \), such that
Proposition 2.3. Let \((X, \Sigma, \mu) \) be a probability space and \(T \) be a Dunford–Schwartz operator, whose restriction to \(L^2(X, \mu) \) is normal. Let \(b \) be a slowly varying function and \(\alpha \in [0, 1] \). Then \(f \in (I - B)L^p(X, \mu) \), whenever \(f \) satisfies the condition

\[
(C_{\rho}) \quad \sum_{n \geq 1} \frac{\| S_n(f) \|_p}{n^{2 - \alpha} b(n)^2} < +\infty.
\]

We recall that an operator \(T \) on \(L^2(X, \mu) \) is normal if \(T^*T = TT^* \). The next proposition follows from Lemma 2.1 and Proposition 2.3 of [3] (see also the proof of Theorem 3.3 there) using (ii) and (iii) of Proposition 2.2:

Proposition 2.4. Let \((X, \Sigma, \mu) \) be a probability space and \(T \) be a Dunford–Schwartz operator, whose restriction to \(L^2(X, \mu) \) is normal. Let \(b \) be a slowly varying function and \(\alpha \in]0, 1[\). Then \(f \in (I - B)L^p(X, \mu) \) if and only if

\[
(C_{\rho}^2) \quad \sum_{n \geq 1} \frac{\| S_n(f) \|_p^2}{n^{2 - 2\alpha} b(n)^4} < +\infty.
\]

For \(p > 1 \), define the dual index \(q := p/(p - 1) \). Our main results are the following.

Theorem 2.5. Let \(T \) be a Dunford–Schwartz operator on \((X, \Sigma, \mu) \). Let \(b \) be a slowly varying function, \(\alpha \in [0, 1[\), \(p > 1 \), and \(B \) as above. Let \(f \in (I - B)L^p(X, \Sigma, \mu) \) (e.g. \(f \) satisfies \((C_{\rho}) \)). Then

\[
\frac{\sum_{k=1}^{n} T^k f}{n^{1/p} \left(\sum_{k=1}^{n} \frac{b(k)^q}{b(n)^{q'}} \right)^{1/q}} \to 0 \quad \mu\text{-a.s.}
\]

Moreover, if \((X, \Sigma, \mu) \) is non-atomic and \(T \) is induced by an ergodic invertible measure preserving transformation \(\theta \), then for every positive function \(\psi \) satisfying \(\lim_{n \to +\infty} \frac{\sum_{k=0}^{n-1} \frac{b(k)^q}{b(n)^{q'}}}{\psi(n)} = +\infty \), there exists \(f \in (I - B)L^p(X, \Sigma, \mu) \) (hence \(\int_X f \, d\mu = 0 \)) such that

\[
\limsup_{n \to +\infty} \frac{\left| \sum_{k=1}^{n} f \circ \theta^k \right|}{n^{1/p} \psi(n)} = +\infty \quad \mu\text{-a.s.}
\]

Remark 1. When \(b \equiv 1 \) we recover Theorem 3.2 of [5], hence Theorem 2.5 shows the optimality of Theorem 3.2 of [5] in the above sense. Weber [9] and Cohen–Lin [1] obtained pointwise ergodic theorems with rate, in the context
of power-bounded operators in $L^p(X, \mu)$. The use of condition (C_p) in Theorem 2.6 yields in case (iii) a better rate than that of [9] or [1]; but, our rate is not as good. A similar discussion holds in case (ii) according to the chosen function b.

Theorem 2.7. Let T be a Dunford–Schwartz operator on (X, Σ, μ), which is normal on $L^2(X, \mu)$. Let b be a slowly varying function, $\alpha \in [0, 1]$ and B as above. Let $f \in L^2(X, \mu)$ satisfying (C'_2). Then

(i) If $\alpha < 1/2$, \[\frac{\sum_{k=1}^{n} T^k f}{n^{1-b(n)}} \xrightarrow{n \to +\infty} 0 \text{ μ-a.s.} \]

(ii) If $\alpha = 1/2$, \[\frac{\sum_{k=1}^{n} T^k f}{\sqrt{n} (\sum_{k=1}^{n} b(k))^{1/2}} \xrightarrow{n \to +\infty} 0 \text{ μ-a.s.} \]

(iii) If $\alpha > 1/2$, \[\frac{\sum_{k=1}^{n} T^k f}{\sqrt{n}} \xrightarrow{n \to +\infty} 0 \text{ μ-a.s.} \]

Remark 2. As in Theorem 2.5, the rates obtained are optimal under condition (C'_2). Our rate in (i) is essentially the same as that obtained by Gaposhkin [6] for unitary operators on $L^2(X, \mu)$.

In the case $p = 2$, it is also possible to give optimal conditions on f to obtain a specific rate. For example, for T induced by a measure-preserving transformation, we have

Theorem 2.8. Let (X, Σ, μ, θ) be a dynamical system, with μ a probability. Let b_0 be any slowly varying function with $\sum_{n \geq 1} b_0(n)^2 < +\infty$. Then for every $f \in L^2(X, \mu)$ such that $\sum_{n \geq 1} \frac{\|S_n(f)\|^2}{n b_0(n)^2} < +\infty$, we have

$$\frac{1}{\sqrt{n}} S_n(f) \xrightarrow{n \to +\infty} 0 \text{ μ-a.s.}$$

Moreover, the series $\sum_{n \geq 1} \frac{f \circ \theta^n}{n}$ converges μ-a.s.

On the other hand, if θ is invertible and the system is ergodic and non-atomic, for every slowly varying function b_1 with $\sum_{n \geq 1} b_1(n)^2 = +\infty$, there exists a function $f \in L^2(X, \mu)$ such that $\sum_{n \geq 1} \frac{\|S_n(f)\|^2}{n b_1(n)^2} = +\infty$ (hence $\int_X f \, d\mu = 0$) and $\limsup \left| \frac{1}{\sqrt{n}} S_n(f) \right| = +\infty$ μ-a.s.

By Proposition 2.4, with $\alpha = 1/2$, the convergence of $\sum_{n \geq 1} \frac{\|S_n(f)\|^2}{n b_0(n)^2}$ ($i \in \{0, 1\}$) is equivalent to the fact that $f \in (I - B)L^2(X, \mu)$ for the corresponding b_1. Theorem 2.8 then becomes a direct application of Theorem 2.5.

Remark 3. For example, take in Theorem 2.8, $b_0 = \frac{1}{\sqrt{\log(n) \log\log n}}$, for $e > 0$, and $b_1 = \frac{1}{\sqrt{\log(n) \log\log n}}$. Then the condition $\sum_{n \geq 2} \log n (\log \log n)^{1+e} \frac{\|S_n(f)\|^2}{n^2} < +\infty$ is sufficient for (3), but, in general, the condition

$$\sum_{n \geq 2} \log n \log \log n \frac{\|S_n(f)\|^2}{n^2} < +\infty$$

is not. Theorem 2.8 has applications in probability, see [3].

3. Proof of Theorem 2.5

Let $f \in (I - B)L^p(X, \mu)$. There exists $h \in L^p(X, \mu)$ such that $f = (I - B)h$, and we may and do assume that $h \in (I - T)L^p(X, \mu)$, since T is mean ergodic on $L^p(X, \mu)$ and $B(1) = 1$. It therefore suffices to show that, for every $h \in (I - T)L^p(X, \mu)$

$$\frac{1}{n^{1/p}} \left(\sum_{k=1}^{n} \frac{b(k)^{p}}{k^{p}} \right)^{1/p} \sum_{k=1}^{n} T^{k}(I - B(T))h \xrightarrow{n \to +\infty} 0 \text{ μ-a.s.}$$

(4)
For \(n \geq 1 \) write \(\sum_{k=1}^{n} T^k(I - B) = C_n - D_n - E_n \), where

\[
C_n = T + \sum_{m=2}^{n} \left(\sum_{k \geq m} \beta_k \right) T^m, \quad E_n = \sum_{k=1}^{n} \left(\sum_{m \geq 2n+1} \beta_{m-k} \right) T^m
\]

and

\[
D_n = \sum_{m=n+1}^{2n} \sum_{k=m-n}^{m-1} \beta_k T^m = \sum_{l=1}^{n} \left(\sum_{k=l}^{l+n-1} \beta_k \right) T^{l+n}.
\]

Hence it suffices to study separately the operator sequences \(\{C_n\} \), \(\{D_n\} \) and \(\{E_n\} \) on \(L^p(X, \mu) \). The first part of Theorem 2.5 will follow from the next propositions, which may be proved as in [5, Theorem 3.2].

Proposition 3.1. Let \(T \) be a Dunford–Schwartz operator on a probability space \((X, \Sigma, \mu) \). Let \(\alpha \in]0, 1[\), \(b \) be any slowly varying function and \(B \) as above. Then, for every \(h \in L^p(X, \mu) \)

\[
\sup_{n \geq 1} \frac{|C_n(h)| + |E_n(h)|}{n^{1-\alpha} b(n)} < +\infty \quad \mu\text{-a.s.}
\]

Proposition 3.2. Let \(T \) be a Dunford–Schwartz operator on a probability space \((X, \Sigma, \mu) \). Let \(\alpha \in]0, 1[\), \(b \) be any slowly varying function and \(B \) as above. Then, for every \(h \in L^p(X, \mu) \)

\[
\sup_{n \geq 1} \frac{|D_n(h)|}{n^{1/p} (\sum_{k=1}^{n} b(k)^{\alpha})^{1/p}} < +\infty \quad \mu\text{-a.s.}
\]

One can see that there exists \(K > 0 \) such that \(n^{1/p} (\sum_{k=1}^{n} b(k)^{\alpha})^{1/p} \geq Kn^{1-\alpha} b(n) \). Hence an application of Banach’s principle (see e.g. [7, Theorem 7.2a, p. 64]) yields that the set of functions of \(L^p(X, \mu) \) satisfying (4) is closed in \(L^p(X, \mu) \). It is not difficult to check that (4) is true for \(f \in (I - T)L^p(X, \mu) \), hence the first part of the theorem is proved.

Let us prove the second part of Theorem 2.5. By Banach’s principle (see [7, Theorem 7.2b, p. 64]), it suffices to show that there does not exist positive decreasing function \(\chi \) on \([0, +\infty[, \) with \(\lim_{\lambda \to +\infty} \chi(\lambda) = 0 \), such that for every \(f \in L^p(X, \mu) \) we have

\[
\mu \left(\left\{ x \in X: \sup_{n \geq 1} \left| \frac{\sum_{k=1}^{n} (I - B)f \circ \theta^k}{n^{1/p} \psi(n)} \right| \geq \lambda \| f \|_p \right\} \right) \leq \chi(\lambda) \quad \forall \lambda > 0.
\]

Hence it suffices to find \(\delta > 0 \), \(L_m \xrightarrow{m \to +\infty} +\infty \), and \(\{f_m\} \subset L^p(X, \mu) \) with \(\sup_{m \geq 1} \| f_m \|_p < +\infty \), such that

\[
\mu \left(\left\{ x \in X: \sup_{n \geq 1} \left| \frac{\sum_{k=1}^{n} (I - B)f_m \circ \theta^k}{n^{1/p} \psi(n)} \right| \geq L_m \right\} \right) \geq \delta \quad \forall m \geq 1.
\]

Using that \(b \) is slowly varying one can show that \(\beta_n \sim \frac{Cb(n)}{an^{1+\alpha}} \) and that there exists \(D > 0 \) such that for every \(n \geq 1 \) and \(l \in \{1, \ldots, n\} \), \(\sum_{k=l}^{l+n-1} \beta_k \geq D b(l) \). Hence for every non-negative measurable function \(f \) in \(L^p(X, \mu) \),

\[
D_n(f) \geq D \sum_{l=1}^{n} \frac{b(l)}{l^\alpha} f \circ \theta^{l+n}.
\]

The following construction is inspired by Déniel [4].

Let \(n \geq 1 \). By Rokhlin’s Lemma (see e.g. [8, Lemma 4.7, p. 48]), there exists a set \(Y_n \subset \Sigma \), such that the sets \(\{\theta^k(Y_n)\}_{1 \leq k \leq 2n} \) are disjoint and \(\mu(X - \bigcup_{k=1}^{2n} \theta^k(Y_n)) < \frac{1}{2n+1} \). In particular, for every \(k \in \{1, \ldots, 2n\} \), \(\frac{1}{2n+1} \leq \mu(Y_n) = \mu(\theta^k(Y_n)) \leq \frac{1}{2n} \).

For every \(n \geq 1 \), define \(u_n := \sum_{k=1}^{2n} b(k)^{\alpha} \) and a non-negative function \(f_n \) on \(X \) by \(f_n(x) = 0 \) for \(x \in X - \bigcup_{k=n+1}^{2n} \theta^k(Y_n) \), and \(f_n(x) = \left(\frac{b(k)^{\alpha}}{k^{\alpha}} \right)^{1/p} (\frac{1}{2n})^{1/p} \) if \(x \in \theta^k(Y_n) \), for some \(k \in \{n+1, \ldots, 2n\} \).
Then \(\{ f_n \} \) is bounded in \(L^p(X,\mu) \). Indeed, we have

\[
\| f_n \|_p = \sum_{k=n+1}^{2n} \| f_n \theta^k(Y_n) \|_p = \frac{n}{u_n} \sum_{k=n+1}^{2n} \left(\frac{b(k-n)}{(k-n)^\alpha} \right)^q \mu(Y_n) \leq 1/2.
\]

Let \(0 \leq j \leq n - 1 \) and take \(x \in \theta^j(Y_n) \). Let \(y \in Y_n \), such that \(x = \theta^j(y) \). We have

\[
D_{n-j}(f)(x) \geq D \sum_{l=1}^{n-j} b(l) \theta^k(Y_n)(x) \geq D \sum_{l=1}^{n-j} b(l) \theta^{n+l}(y)
\]

\[
= D \left(\frac{n}{u_n} \right)^{1/p} \frac{n-j}{q/p} \left(\frac{b(l)}{l^{\alpha}} \right) = D \left(\frac{n}{u_n} \right)^{1/p} u_n^{-j}.
\]

Using that \(b \) is slowly varying, one can see that there exists \(K > 0 \) such that for every \(n \geq 1 \), and every \(j \leq n/2 \),

\[
u^{-j} \geq K u_n.
\]

Hence, noticing that \(C_{n-j}(f_n)(x) = 0 \) and \(E_{n-j}(f_n)(x) \geq 0 \), we obtain, for every \(0 \leq j \leq n/2 \) and \(x \in \theta^j(Y_n) \),

\[
\left| \sum_{k=1}^{n-j} (I - B)(f_n)(\theta^k(x)) \right| \geq D \frac{u_n^{1/q}}{K^{1/p} \psi(n-j)} (n-j)^{1/p} \psi(n-j).
\]

So, on the set \(\bigcup_{0 \leq j \leq n/2} \theta^j(Y_n) \) whose measure is greater than \(\frac{n}{2n+1} \sim \frac{1}{3} \),

\[
\sup_{r \geq 1} \frac{\left| \sum_{k=1}^{r} (I - B)(f_n) \circ \theta^k \right|}{r^{1/p} \psi(r)} \geq \frac{D}{K^{1/p} \inf_{s \geq n/2} \psi(s)} u_n^{1/q} \rightarrow +\infty \text{ as } n \rightarrow +\infty,
\]

which proves (6).

References