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Abstract

Let D be a division algebra of degree 3 over a field containing a primitive cube root of unity. We give two proofs of a theorem
of Rost asserting that any two Kummer elements in D can be connected by a chain of length 4. To cite this article: D. Haile et al.,
C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Chaines d’éléments de Kummer dans les corps gauches de degré 3. Soit D un corps gauche de degré 3 sur un corps contenant
une racine cubique de l’unité. Nous donnons deux démonstrations d’un théorème de Rost établissant que deux éléments de Kummer
quelconques de D peuvent être joints par une chaine de longueur 4. Pour citer cet article : D. Haile et al., C. R. Acad. Sci. Paris,
Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let F be a field containing a primitive cube root of unity, ω. Let D be an F -central division algebra of degree 3. An
element x ∈ D is called Kummer if x3 ∈ F×, but x /∈ F . If x and y are Kummer we say the pair (x, y) is an ω-pair if
yx = ωxy. We also denote this by an arrow from x to y, so x → y means (x, y) is an ω-pair. By a well known theorem
of Wedderburn every F -central division algebra of degree 3 contains an ω-pair. If x and y are Kummer elements in D,
a chain from x to y is a finite sequence x = x0 → x1 → x2 → ·· · → xn = y. We call the integer n the length of the
chain.

The question of whether, given Kummer elements x and y, there is a finite chain from x to y was considered by
Rost [4] who proved:
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Theorem 1.1 (Rost). Any two Kummer elements x, y ∈ D are connected by a chain of length 4: there exist Kummer
elements z1, z2, z3 in D such that x → z1 → z2 → z3 → y.

The purpose of this Note is to present two new proofs of this result. Both proofs are different from that of Rost and
are strikingly different from each other; the first is entirely geometric and the second is quite explicit and computa-
tional.

2. Geometric proof of Rost’s theorem

The geometry we refer to is that provided by the coefficients of the reduced characteristic polynomial of elements
in D. For x ∈ D, let t3 − Tr(x)t2 + Sr(x)t − Nr(x) ∈ F [t] be the reduced characteristic polynomial of x, so Tr is the
reduced trace. Let D0 denote the set of elements of reduced trace 0, a subspace of D of dimension 8. The quadratic
form Sr on D0 has polar bilinear form b(x, y) = −Tr(xy) by [3, (34.14)], and it is hyperbolic: The algebra D can be
split by an odd degree (in fact degree 3) extension of F and in the split case an easy computation shows that the Witt
index of the form is 4. By Springer’s theorem the form Sr on D therefore has Witt index 4 and so is hyperbolic on D0.

The totally isotropic subspaces of D0 form a geometry, an example of a so-called polar space. The axioms and basic
properties of polar spaces can be found in Sections 7.3 and 7.4 of Cameron [2]. To emphasize the geometric point of
view we consider more generally a (smooth) projective quadric X of dimension 6 defined by a hyperbolic quadratic
form over F . The corresponding polar space, consisting of linear subspaces contained in X, has points, lines, and two
types of linear spaces of dimension 3, which we call solids. We let P, L, S+ and S− denote respectively the sets of
points, lines, and solids of the two different types. The incidence relation between points and lines, and between lines
and solids, is the inclusion. Two solids of different types are called incident if they intersect in a plane; otherwise, their
intersection is a point. As usual, two points are called collinear if there is a line to which they are both incident. We
also call solids of the same type collinear if there is a line that is incident to both of them, which amounts to saying
their intersection is a line (unless they coincide); if they are not collinear, their intersection is empty. It should be said
that one could prove our results in the setting of an abstract polar space of rank 4 which is “hyperbolic” in the sense
that every linear subspace of dimension 2 is contained in exactly two solids. However such polar spaces were shown
by Tits ([5, Theorem 7.12 and Proposition 8.4.3]) to be isomorphic to the one arising from a hyperbolic quadric as
above and so there would be no real added generality.

Lemma 2.1. Let a, b ∈ P, S+ ∈ S+, and S− ∈ S−. If S+ and S− are incident, there is a point c ∈ P that is collinear
with a and b, and incident to S+ and S−.

Proof. By hypothesis, the intersection S+ ∩ S− is a plane. This intersection meets the intersection of the tangent
hyperplanes to X at a and b in at least one point c, which meets all the requirements. �

The polar space X admits (geometric) triality, that is, there is a permutation

t :P � L � S+ � S− → P � L � S+ � S− with t (P) = S+, t (S+) = S−, t (S−) = P,

which preserves the incidence relations, and such that t3 is the identity. The proof of the existence of such a triality
map can be found in Section 8.6 of Cameron [2].

Any triality t yields a geometric version of ω-pair: For a, b ∈ P, we write a → b if the following two conditions
hold: (i) a and b are collinear, and (ii) a and t (b) are incident. Note that condition (ii) is also equivalent to: t (a) and
t2(b) are incident, or to: b and t−1(a) are incident.

Proposition 2.1. If a, b ∈ P are such that b is incident to t (a), then there exists c ∈ P such that a → c → b.

Proof. The hypothesis implies that t (b) and t−1(a) are incident. Therefore, Lemma 2.1 yields c ∈ P that is collinear
with a and b, and incident to t (b) and t−1(a). �
Theorem 2.1. For any a, b ∈ P, there exist c1, c2, c3 ∈ P such that a → c1 → c2 → c3 → b.
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Proof. Since t (a) and t−1(b) are solids of different types, their intersection is not empty. Let c2 ∈ P be incident
to t (a) and t−1(b). Then b is incident to t (c2), and Proposition 2.1 yields c1, c3 ∈ P such that a → c1 → c2 and
c2 → c3 → b. �

The length of chains connecting two points can be shortened in some cases.

Proposition 2.2. If a, b ∈ P are collinear, then there exist c1, c2 ∈ P such that a → c1 → c2 → b.

Proof. Let � ∈ L be incident to a and b. Then t (a) and t (b) are incident to t (�). Let c2 ∈ P be the intersection of t (�)

with the hyperplane tangent to X at b. Then c2 and b are collinear and c2 is incident to t (b), hence c2 → b. On the
other hand, c2 is incident to t (a), hence Proposition 2.1 yields c1 ∈ P such that a → c1 → c2. �

We apply these results to the case of the form Sr on D0. For this polar space X the points are the one-dimensional
vector spaces spanned by Kummer elements of D0, the lines and solids are the two-dimensional totally isotropic
subspaces and the maximal (four-dimensional) totally isotropic subspaces of D0, respectively, viewed projectively.
Two points a = xF , b = yF are collinear if they lie on the same line, which is equivalent to the condition Tr(xy) = 0.
Moreover one can write down an explicit triality map in terms of the Okubo product. We recall the definition: For
x, y ∈ D0 the Okubo product x ∗ y is given by

x ∗ y = yx − ωxy

1 − ω
− 1

3
Tr(xy).

For each Kummer element x the spaces x ∗ D0 = {x ∗ y | y ∈ D0} and D0 ∗ x = {y ∗ x | y ∈ D0} are maximal totally
isotropic subspaces of D0 and these give the two kinds of solids. A triality map t is then given by t :xF �→ x ∗ D0 �→
D0 ∗ x �→ xF . For the details see Sections 34 and 35 of the Book of Involutions, Knus et al. [3]. In particular from
Proposition 34.19 of [3], we have

x ∗ (y ∗ x) = (x ∗ y) ∗ x = −1

3
Sr(x)y (1)

for all x, y ∈ D0. It follows from this that if x is a Kummer element then t (x) = x ∗ D0 = {z ∈ D0 | z ∗ x = 0}.
Therefore for points a = xF , b = yF in this geometry the condition a → b (that is, a and b are collinear and a is
incident to t (b)) is equivalent to Tr(xy) = 0 and x ∗ y = 0. From the definition of the product this is exactly the
condition that (x, y) is an ω-pair (and so xF → yF if and only if x → y). Rost’s Theorem 1.1 thus readily follows
from Theorem 2.1. Moreover, Proposition 2.2 yields:

Corollary 2.2. Let D be an F -central division algebra of degree 3 and let x, y be Kummer elements in D. If xF and
yF are collinear (that is, if Tr(xy) = 0), there is a chain from x to y of length 3.

Note that the geometric argument also applies in other cases where a geometric triality is defined, such as the space
of symmetric elements of reduced trace 0 in a division algebra of degree 3 endowed with a distinguished unitary
involution τ satisfying τ(ω) = ω−1, or the split octonion algebra (see [1, §3]).

3. Algebraic proof of Rost’s theorem

Our second proof of Rost’s theorem is noteworthy in that it produces an explicit formula for a chain of length 4
between two Kummer elements. As before let x, y be Kummer elements in the degree 3 algebra D. We will again use
the Okubo product ∗, but also the product � defined on the space D0 of trace zero elements by

x � y = xy − 1

3
Tr(xy).

Note that x � y = 0 if and only if xy ∈ F , that is y = αx2, for some α ∈ F×.

Lemma 3.1. Let x, y be Kummer elements in D with xy /∈ F . If x ∗ y = 0, then we have a chain x → x � y → y.
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Proof. Because x ∗ y = 0, we have yx − ωxy = ( 1−ω
3 )Tr(xy). Hence

y(x � y)y−1 = yx − 1

3
Tr(xy) = ωxy − ω

3
Tr(xy) = ωx � y.

A similar calculation shows (x � y)x = ωx(x � y). Since xy /∈ F , it follows that x � y 	= 0 and so we have the desired
chain. �

We break the proof of Rost’s Theorem 1.1 into several cases. We will produce chains of lengths at most 4 so we first
observe that the length of any chain can be increased: If (x, y) is an ω-pair, then x → xy → y is a chain of length 2.

We assume first that xy ∈ F , so y = αx2 for some α ∈ F×. In that case if v is any element of D0 such that
vx = ωxv, then we have the chain x → v → y. Also if y = αx for some α ∈ F , then we have the chain x → v →
x2 → v2 → y.

So we may assume y is not a multiple of x or x2. If y ∗ x = 0 then the previous lemma produces a chain x →
(y � x)2 → y of length 2.

Now we assume y ∗ x 	= 0 and y is not a multiple of x or x2. By (1), we have x ∗ y ∗ x = y ∗ x ∗ y = 0. Assume
x(y ∗ x) ∈ F . Then as above we have a chain x → v → y ∗ x where v ∈ D0 is any element such that vx = ωxv.
Because y is not a multiple of x or x2, we must have (y ∗ x)y /∈ F and so from the lemma we obtain a chain
y ∗ x → (y ∗ x) � y → y. Putting these two chains together gives the chain x → v → y ∗ x → (y ∗ x) � y → y.
A similar argument handles the case (y ∗ x)y ∈ F .

Finally if we assume y ∗ x 	= 0, y is not a multiple of x or x2, and neither x(y ∗ x) or (y ∗ x)y is in F , then from
x ∗ y ∗ x = y ∗ x ∗ y = 0 and the lemma we obtain the chain x → x � (y ∗ x) → y ∗ x → (y ∗ x) � y → y. �

To see that this last chain is not a chain one would guess easily, note that

x � (y ∗ x) = xyx − ωx2y

1 − ω
− 1

3
Tr(xy)x − 1

3
Tr(xyx) − 1

3
Tr(xy).
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