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Abstract

Time-dependent Hamiltonian dynamics is derived for a strand of charged units in R
3 held together by both nonlocal (for exam-

ple, electrostatic) and elastic interactions. The dynamical equations in the symmetry-reduced variables are written on the dual of
the semidirect-product Lie algebra so(3)� (R3 ⊕ R

3 ⊕ R
3 ⊕ R

3) with three 2-cocycles. We also demonstrate that the nonlocal
interaction produces an interesting new term deriving from the coadjoint action of the Lie group SO(3) on its Lie algebra so(3). The
new strand equations are written in conservative form by using the corresponding coadjoint actions. To cite this article: D.D. Holm,
V. Putkaradze, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Dynamique non-locale des filaments électisés. Nous établir les équations de la dynamique hamiltonienne d’une courbe (chaine
moléculaire) dans l’espace physique R

3 sujette á des interactions élastiques ainsi que non-locales (électrostatiques par exemple).
Les équations dynamiques des variables réduites par symétrie sont écrites sur l’espace dual de l’algèbre de Lie so(3)� (R3 ⊕
R

3 ⊕ R
3 ⊕ R

3) (produit semidirect) avec trois 2-cocycles. Nous démontrons aussi que l’interaction non-locale produit un nouvel
terme intéressant, qui dérive de l’action coadjointe du group de Lie SO(3) sur son algébre so(3). Les nouvelles équations du
filament sont écrites sous une forme conservative grâce aux actions coadjointes correspondantes. Pour citer cet article : D.D. Holm,
V. Putkaradze, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Cette Note dépasse le cadre des approches à la Kirchhoff pour établir les équations de la dynamique hamiltonienne
d’une courbe (chaine moléculaire) dans l’espace physique R

3, lorsqu’elle est sujette à des interactions élastiques ainsi
que non-locales (électrostatiques par exemple). Cette Note s’inspire d’une extension de la théorie des barres géomé-
triques parfaites [16], qui présente l’interaction élastique dans un contexte géométrique par l’usage des coordonnées
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matérielles. Cette théorie a déjà été utilisée pour la description de quelques aspects de la dynamique des protéines [3].
Toutefois la généralisation des ces théories aux interactions non-locales (qui dépendent du temps) exige l’application
de méthodes géométriques pour dériver le principe d’action (12), qui vont au-delà de l’approche à la Kirchhoff. Les
équations dynamiques des variables réduites par symétrie (13), (14) sont écrites dans l’espace dual de l’algèbre de Lie
so(3)� (R3 ⊕ R

3 ⊕ R
3 ⊕ R

3) (produit semidirect) avec trois 2-cocycles. De plus, les nouvelles équations du filament
sont écrites sous une forme conservative (22) en utilisant les actions coadjointes correspondantes. Notre approche
rend possible l’inclusion cohérente des effets électrostatiques et inertiels dans les études théoriques et numériques
de la dynamique des chaines biologiques. Cela garantit aussi la conservation de l’énergie et étend les traitements
Hamiltoniens à la Lie Poisson [16,8,13] afin d’englober la dépendance non-locale des variables.

1. Introduction

Consideration of biological strands as a continuum curve has a long and rich history with some notable successes
[11,1,10,12]. Most studies in this approach – both for stationary and time dependent models – used the framework of
the Kirchhoff model of elastic rods. That framework, however, has been so far not been able to overcome the mathe-
matical difficulties of incorporating electrostatic (nonlocal) effects into the dynamics, by a straight-forward extension
of Kirchhoff theory. Some recent progress has been made on the stationary solutions in the continuum framework [6].
However, no time-dependent theory considering nonlocal effects yet exists to our knowledge, as Kirchhoff’s theory is
formulated in the intrinsic frame connected with the deformed rod. Hence, the computation of distances in Euclidean
space becomes non-trivial, especially in the case when distances depend on orientation, see Fig. 1 below.

This Note overcomes the problems confronted in standard Kirchhoff-based approaches by using an extension of
the theory of exact geometric rods [16], which puts elastic interactions into a geometric framework using the material
frame viewpoint. This theory has already been used to describe some aspects of protein dynamics [3]. However, the
generalization of these theories for time-dependent nonlocal interactions requires geometric methods. This theory is
applicable to the fast folding motion of molecular strands, or similar motion of oriented charged strands in vacuum.
More accurate dynamics of stands including friction can then be considered by adding appropriate terms to the inviscid
motion. However, the introduction of dissipation into the motion of biological strands is a complicated issue [11,10]
that will be deferred to future work.

2. Motion of exact self-interacting geometric rods

We consider rigid conformations of charges mounted along a flexible filament at r(s, t) at distances ηk(s, t) and
allow these charges to interact with each other via a potential (for proteins, the screened electrostatic potential). For
simplicity, each charge ‘bouquet’ is assumed to rotate as a rigid body with respect to its origin, so ηk(s, t) := ηk(s) and
the charges are assumed mass less so the center of mass for each bouquet has its center of mass at its base. Our methods
allow consideration of charges with mass, but the resulting expressions become too complicated to be presented here,
without any valuable insight into mathematical structure. The parameter s is a parametrization along the filament; it
can be chosen to be the arclength for inextensible filaments. For our purposes, we assume that s ∈ I and all boundary
conditions at the end of the interval I are appropriate so no boundary terms appear. Thus, the map s → r(s, t) does
not need to be an isometry. This rigid conformational rotation is illustrated in Fig. 1. Thus, the configuration of the
filament is described by the two maps s → r(s, t) with the values in R

3 and s → Λ(s, t) with the values in SO(3).
Suppose each rigid conformation of charges is identical and the k-th electrical charge is positioned near a given

point r(s, t) of the curve at the reference state r + ηk(s). Here, ηk(s) is a vector of constant length that determines the
position of the k-th electrical charge relative to the point r(s, t) along the curve in its reference configuration. If the
curve position r remains fixed, rotation is allowed only in a plane so Λ ∈ SO(2) and there is only one charge k = 1,
our model reduces to that considered in [15]. In general, the position ck of the k-th charge in the rigid conformation
anchored at position r(s, t) rotates to a new position with Λ(s, t) ∈ SO(3) as ck(s, t) = r(s, t) + Λ(s, t)ηk(s), where
Λ(s,0) = Id.

Some discussion is warranted here on the connection to previous studies. In [7], the nonlocal (for example, elec-
trostatic) interaction force was considered for charges that were distributed along the string itself (Eq. (2.3.7)),
corresponding to i.e. all ηi = 0 of our case. This formula involved explicitly the Euclidean distance between two
points on the rod, r(s) − r(s′), and a mollifier M(s, s′) making the total energy finite, necessary for electrostatic
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Fig. 1. Rigid conformations of charges are distributed along a curve. Dashed lines – original state, solid lines – final state.

interactions. In [1] electrostatic interactions between sufficiently nearby points on the rod were removed. The torque
on the rod due to nonlocal forces was assumed to be zero. This technique has been successful in computing stationary
rod configurations, see [6,2]. Unfortunately, in Kirchoff’s approach, Euclidean distances and orientations can only be
computed after the configuration of the rod is known, so the use of this technique for time-dependent simulations is
difficult. In contrast, the present work derives explicit formulas for dynamical rod evolution for the non-trivial forces
and torques, when the charges are offset from the rod’s centerline.

We consider the Lagrangian L consisting of two additive parts: (i) the localized part l, including all the elastic
interactions and the kinetic energy; and (ii) the nonlocal part lnp that describes nonlocal interactions. The localized
part l of the Lagrangian depends on Λ, Λ̇, Λ′, r(s), ṙ , r ′, where the dot denotes the time derivative and prime is the
derivative with respect to parameter s. If it is left-invariant under the action of SO(3), this Lagrangian may be reduced
to a function of left-invariant quantities: Ω = Λ−1Λ′, ω = Λ−1Λ̇, Γ = Λ−1r ′, γ = Λ−1ṙ and ρ = Λ−1r . These
quantities are maps from (s, t) with values in so(3) (Ω and ω) and R

3 (Γ , γ and ρ). Capital Greek letters denote
derivatives in s, while lower-case Greek letters (except for ρ) denote derivatives in time. Bold letters such as ω denote
vectors in R

3 while Ω is a skew 3 × 3 matrix in the Lie algebra so(3) whose entries correspond to vector components
via the isomorphism between so(3) and R

3. For example, for any vector v ∈ R
3 one has Ωv = Ω × v; in components,

this is the map Ωjk = −εjklΩl .
The nonlocal part of the potential energy lnp of interaction between rigid conformations of charges at spatial

coordinates s and s′ along the filament depends only on the distance dk,m(s, s′) between the k-th and m-th charges in
the two conformations,

lnp =
∑
k,m

1

2

∫
U

(
dk,m(s, s′)

)∣∣Γ (s)
∣∣∣∣Γ (s′)

∣∣ds ds′, dk,m(s, s′) = ∣∣ck(s) − cm(s′)
∣∣. (1)

Here, the terms |Γ (s)| = |Λ−1 dr/ds| = |dr/ds| appear because the mapping s → r(s, t) is not isometric. Here, U(d)

is the potential energy between two charges, modified as necessary for d → 0 so that all the integral terms written
below converge. The scalar distance dk,m may also be expressed in terms of vectors seen from the frame of orientation
of the rigid body at a point x along the filament, as

dk,m(s, s′) = ∣∣ck(s) − cm(s′)
∣∣ = ∣∣κ(s, s′) + ηk(s) − ξ(s, s′)ηm(s′)

∣∣, where (2)

ξ(s, s′) = Λ−1(s)Λ(s′) and κ(s, s′) = Λ−1(s)
(
r(s) − r(s′)

) = ρ(s) − ξ(s, s′)ρ(s′) (3)

(suppressing the t index) are functions with the values in R
3 and SO(3), respectively. The first of these quantities

is the spatial vector r(s) − r(s′) between two points on the filament, as seen from the orientation Λ(s) of the rigid
body (charge conformation) at s on the filament. The second is the relative orientation of the rigid bodies (charge
conformations) at s and s′. A transposition identity, ξ(s, s′)T = ξ(s′, s) = ξ(s, s′)−1, follows from the definition of
ξ(s, s′) in (3). Note that both the vector κ(s, s′) and the relative orientation ξ(s, s′) defined in (3) are invariant under
changes of the orientation of the spatial coordinate system obtained by the left action r(s) − r(s′) → O(r(s) − r(s′))
and Λ → OΛ of any element O in the rotation group SO(3).
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In terms of these quantities, we assume the symmetry-reduced Lagrangian L may be written as the sum of a local
part l and a nonlocal part lnp, according to

L(ρ,γ ,Γ ,ω,Ω, ξ) = l(ρ,γ ,Γ ,ω,Ω) +
∫

U
(
κ(s, s′), ξ(s, s′)

)∣∣Γ (s)
∣∣∣∣Γ (s′)

∣∣ds ds′ := l + lnp. (4)

3. Kinematics

Let us compute the space and time derivatives of ρ = Λ−1r ∈ R
3. The space (s) derivative of ρ (denoted by a

prime) and time (t) derivative (denoted by a dot) are given by

ρ′ = −Ωρ + Γ = −Ω × ρ + Γ and ρ̇ = −ωρ + γ = −ω × ρ + γ . (5)

Compatibility of these formulas arises from equality of the cross-derivatives of r and Λ. Namely,

Γ̇ + ω × Γ = γ ′ + Ω × γ and Ω̇ = Ω × ω + ω′. (6)

4. Variations

The variations of ρ, ω, γ , Ω and Γ are computed by the following steps:

δρ = −Λ−1δΛΛ−1r + Λ−1δr = −Σρ + Ψ = −Σ × ρ + Ψ = ρ × Σ + Ψ , (7)

where one defines the left-invariant variations Σ = Λ−1δΛ ∈ so(3) and Ψ = Λ−1δr ∈ R
3. The variations δγ , δΓ , δω

and δΩ are given in terms of the left-invariant quantities Σ and Ψ by

δγ = −Σ × γ + ω × Ψ + ∂Ψ

∂t
, δΓ = −Σ × Γ + Ω × Ψ + ∂Ψ

∂s
, (8)

δω = ω × Σ + ∂Σ

∂t
and δΩ = Ω × Σ + ∂Σ

∂s
. (9)

The key to understanding the nonlocal variations lies in the matrix formula

ξ−1δξ(s, s′) = −Adξ−1(s,s′) Σ(s) + Σ(s′), where Adξ−1 Σ := ξ−1Σξ, (10)

obtained from the definition of ξ(s, s′) in Eq. (3). The variation of κ in (3) is then given by

δκ(s, s′) = −Σ(s) × κ(s, s′) + Ψ (s) − ξ(s, s′)Ψ (s′). (11)

5. Calculation of energy variations

The equations of motion are computed from the stationary action principle δS = 0, with S = ∫
Ldt and L = l + lnp

in Eq. (4), for which

δS =
∫ 〈

δl

δρ
, δρ

〉
+

〈
δl

δγ
, δγ

〉
+

〈
δ(l + lnp)

δΓ
, δΓ

〉
+

〈
δl

δω
, δω

〉

+
〈

δl

δΩ
, δΩ

〉
+

〈
δlnp

δκ
, δκ

〉
+

〈
ξ−1 δlnp

δξ
, ξ−1δξ

〉
dt = 0. (12)

The terms proportional to Σ and Ψ give, respectively,(
∂

∂t

δl

δω
+ ω × δl

δω

)
+

(
∂

∂s

δl

δΩ

)
+ Ω × δl

δΩ
= δl

δγ
× γ + δ(l + lnp)

δΓ
× Γ + δl

δρ
× ρ

+
∫ (

∂U

∂κ
(s, s′) × κ(s, s′) + Z(s, s′)

)∣∣Γ (s)
∣∣∣∣Γ (s′)

∣∣ds′, (13)
(

∂

∂t

δl

δγ
+ ω × δl

δγ

)
+

(
∂

∂s

δ(l + lnp)

δΓ
+ Ω × δl

δΓ

)

= δl +
∫ (

∂U
(s, s′) − ξ(s, s′)∂U

(s′, s)
)∣∣Γ (s)

∣∣∣∣Γ (s′)
∣∣ds′, (14)
δρ ∂κ ∂κ
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where Z(s, s′) := Z(s, s′)× = ξ(s, s′)
(

∂U

∂ξ
(s, s′)

)T

− ∂U

∂ξ
(s, s′)ξT (s, s′). (15)

The term Z(s, s′) is the torque contribution from the nonlocal part of the Lagrangian we have sought. A direct calcu-
lation shows that ZT = −Z, so Z ∈ so(3). This expression appears naturally in geometric mechanics of interacting
oriented bodies such as asteroids [4]. The more general theory of reduction by stages [5] illuminates the geometric
nature of such interactions.

6. Spatial conservation laws

The physical meaning of Eqs. (13), (14) is revealed by writing them as conservation laws. For this, we invoke the
following identities for the Ad- and Ad∗-actions of any element g(t) ∈ G in the Lie group on η ∈ g in the Lie algebra
and μ ∈ g∗ in its dual with pairing 〈·,·〉 :g∗ × g → R〈

μ,Adg−1(t)

∂

∂t
Adg(t) η

〉
= 〈μ, adσ η〉 and

〈
Ad∗

g(t)

∂

∂t
Ad∗

g−1(t)
μ, η

〉
= 〈− ad∗

σ μ,η
〉
, (16)

where Ad∗ :G×g∗ → g∗ is defined by 〈Ad∗
g(t) μ, η〉 := 〈μ, Adg(t) η〉 and σ = g−1g′(t) ∈ g belongs to the Lie algebra

g. Eqs. (13), (14) are formulated on the dual of the Lie algebra, so by second equation of (16),〈
Ad∗

g(t)

∂

∂t

(
Ad∗

g−1(t)
μ(t)

)
, η

〉
= 〈

μ̇ − ad∗
σ μ,η

〉
. (17)

To derive the conservation form of Eqs. (13), (14), we consider the group G = SE(3) with the group ele-
ment g = (Λ(s, t), r(s, t)), whose left-invariant time-derivative is σ = (Λ−1Λ̇,Λ−1ṙ) = (ω,γ ) and s-derivative is
(Λ−1Λ′,Λ−1r ′) = (Ω,Γ ). Using the definition of ad∗ for the se(3) Lie algebra yields, respectively:

Ad∗
g(t)

∂

∂t

[
Ad∗

g−1(t)

(
δL

δω
,
δL

δγ

)]
= ∂

∂t

(
δL

δω
,
δL

δγ

)
+

(
ω × δL

δω
+ γ × δL

δγ
,−ω × δL

δγ

)
, (18)

Ad∗
g(s)

∂

∂s

[
Ad∗

g−1(s)

(
δL

δΩ
,
δL

δΓ

)]
= ∂

∂s

(
δL

δΩ
,
δL

δΓ

)
+

(
Ω × δL

δΩ
+ Γ × δL

δΓ
,−Ω × δL

δΓ

)
. (19)

Note that the nonlocal term (15) arises as the derivative of the nonlocal part of the potential with respect to Lie
algebra elements Ω and Γ , as follows. Upon identifying coefficients of the free variations Σ× = Λ−1δΛ and Ψ =
Λ−1δr , we write the following identity relating different derivatives of the nonlocal potential lnp:

δlnp =
〈
ξ−1 δlnp

δξ
, ξ−1δξ

〉
+

〈
δlnp

δκ
, δκ

〉
+

〈
δlnp

δΓ
, δΓ

〉
=

〈
δlnp

δΓ

∣∣∣∣
Tot

, δΓ

〉
+

〈
δlnp

δΩ
, δΩ

〉
.

Here, ·|Tot denotes the total of the derivative with respect to Γ . Using expressions (10) for ξ−1δξ , (11) for δκ , (9)
for δΩ and (8) for δΓ , then collecting terms proportional to the free variation Σ yields the following identity, which
implicitly defines δlnp/δΩ in terms of known quantities,

− ∂

∂s

δlnp

δΩ
+ Ω × δlnp

δΩ
=

∫
∂U

∂κ
(s, s′) × κ(s, s′)ds′ +

∫
Z(s, s′)ds′, (20)

where we have defined Z(s, s′) according to (15). Likewise, identifying terms multiplying Ψ gives

− ∂

∂s

δlnp

δΓ

∣∣∣∣
Tot

+ Ω × δlnp

δΓ

∣∣∣∣
Tot

=
∫

∂U

∂κ
(s, s′) − ξ(s, s′)∂U

∂κ
(s′, s)ds′. (21)

Therefore, we conclude that Eqs. (13), (14) are equivalent to the following pair of equations expressed in conservative
form using variations of the total Lagrangian, L := l + lnp:

∂

∂t

[
Ad∗

g−1(t)

(
δL

δω
,
δL

δγ

)]
+ ∂

∂s

[
Ad∗

g−1(t)

(
δL

δΩ
,
δL

δΓ

∣∣∣∣
Tot

)]
= Ad∗

g−1(t)

(
δL

δρ
× ρ,

δL

δρ

)
. (22)

The quantities Ad∗
g−1(t)

(δL/δω, δL/δγ ) represent, respectively, the spatial angular momentum density and the spatial

linear momentum density of the strand, whose center of mass lies along its centerline. The terms Ad∗
−1 (δL/δρ ×
g (t)
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ρ, δL/δρ) are spatial external torques and forces, respectively, which are not expressible in conservation form. (This
is similar to the situation for the heavy top.)

Note that these equations strengthen the results of [6] stating that a uniform charge along the string can be absorbed
into an effective spring constant for helical shapes. Eq. (22) states that result of all nonlocal interactions can be written
in conservative form as if appearing from purely elastic forces. In proving this result, the nonlocal interactions are
treated using the implicit variational derivatives in Eqs. (20), (21).

7. Hamiltonian approach

On Legendre transforming the Lagrangian L to the Hamiltonian, H(μ,β;Ω,Γ ,ρ) = ∫
(μ · ω + β · γ )ds −

L(ω,γ ;Ω,Γ ,ρ), Eqs. (5), (6), (13) and (14) may be expressed as

∂

∂t

⎡
⎢⎢⎢⎣

μ

ρ

Ω

Γ

β

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

μ× ρ× (∂s + Ω×) Γ × β×
ρ× 0 0 0 Id

(∂s + Ω×) 0 0 0 0
Γ × 0 0 0 (∂s + Ω×)

β× −Id 0 (∂s + Ω×) 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

δH/δμ = ω

δH/δρ

δH/δΩ

δH/δΓ

δH/δβ = γ

⎤
⎥⎥⎥⎦ . (23)

This Lie–Poisson Hamiltonian matrix is dual to the semidirect-product Lie algebra so(3)� (R3 ⊕ R
3 ⊕ R

3 ⊕ R
3)

with three different types of 2-cocycles defined on its normal R
3 subalgebras. The symplectic 2-cocycle in {ρ,β} in-

duces the generalized 2-cocycle in {Γ ,β}, for which Ω is a Casimir; so Ω× is a constant in this 2-cocycle. In contrast,
the quantity Ω× in the generalized 2-cocycle for {μ,Ω} is a connection form. The latter 2-cocycle also appears in the
theory of complex fluids [16,8,13]. Because of its mathematical generality, the Hamiltonian formulation derived in
the Euler–Poincaré framework here appeared before in several other applications with quite different physics: (i) the
SO(3) version of the Yang–Mills gauge theory of classical chromohydrodynamics [9]; (ii) the theory of spin-glass
dynamics [14]; (iii) the geometrically exact rod theory presented in [16]; and (iv) the complex fluids theory of [13].
In addition, the effects of nonlocal interactions are now incorporated here by computing the derivatives implicitly in
Eqs. (20), (21).

Acknowledgements

The authors were partially supported by NSF grant DMS-05377891, the Royal Society of London Wolfson Re-
search Merit Award and MISGAM program of the European Science Foundation.

References

[1] A. Balaeff, L. Mahadevan, K. Schulten, Elastic rod model of a DNA loop in the lac operon, Phys. Rev. Lett. 83 (1999) 4900–4903.
[2] J.R. Banavar, T.X. Hoang, J.H. Maddocks, A. Maritan, C. Poletto, A. Stasiak, A. Trovato, Structural motifs of macromolecules, Proc. Natl.

Acad. Sci. 104 (2007) 17283–17286.
[3] T.C. Bishop, R. Cortez, O.O. Zhmudsky, Investigation of bend and shear waves in a geometrically exact elastic rod model, J. Comp. Phys. 193

(2004) 642–665.
[4] H. Cendra, J.E. Marsden, Geometric mechanics and the dynamics of asteroid pairs, Dynamical Systems 20 (2005) 3–21.
[5] H. Cendra, J.E. Marsden, T.S. Ratiu, Lagrangian Reduction by Stages, Memoirs American Mathematical Society, vol. 152, 2001.
[6] N. Chouaieb, A. Goriely, J.H. Maddocks, Helices, Proc. Natl. Acad. Sci. 103 (2006) 9398–9403.
[7] D. Dichmann, Y. Li, J.H. Maddocks, Hamiltonian formulations and symmetries in rod mechanics, in: Mathematical Approaches to Biomolec-

ular Structure and Dynamics, Minneapolis, MN, 1994, in: IMA Vol. Math. Appl., vol. 82, Springer, New York, 1996, pp. 71–113.
[8] F. Gay-Balmaz, T.S. Ratiu, The geometric structure of complex fluids, Adv. Appl. Math. 42 (2) (2009) 176–275.
[9] J. Gibbons, D.D. Holm, B.A. Kupershmidt, Gauge-invariant Poisson brackets for chromohydrodynamics, Phys. Lett. A 90 (1982) 281–283.

[10] R. Goldstein, A. Goriely, G. Huber, C. Wolgemuth, Bistable helixes, Phys. Rev. Lett. 84 (2000) 1631–1634.
[11] R. Goldstein, T.R. Powers, C.H. Wiggins, Viscous nonlinear dynamics of twist and writhe, Phys. Rev. Lett. 80 (1998) 5232–5235.
[12] A. Hausrath, A. Goriely, Repeat protein architectures predicted by a continuum representation of fold space, Protein Sci. 15 (2006) 1–8.
[13] D.D. Holm, Euler–Poincaré dynamics of perfect complex fluids, Geometry, Mechanics and Dynamics, Special Volume in Honor of J.E.

Marsden (2001) 113–167.
[14] D.D. Holm, B.A. Kupershmidt, The analogy between spin glasses and Yang–Mills fluids, J. Math. Phys. 29 (1988) 21–30.
[15] I. Mezic, On the dynamics of molecular conformation, Proc. Natl. Acad. Sci. 103 (2006) 7542–7547.
[16] J.C. Simó, J.E. Marsden, P.S. Krishnaprasad, The Hamiltonian structure of nonlinear elasticity: The material and convective representations

of solids, rods, and plates, Arch. Rational Mech. Anal. 104 (1988) 125–183.


	Nonlocal orientation-dependent dynamics of charged  strands and ribbons
	Version française abrégée
	Introduction
	Motion of exact self-interacting geometric rods
	Kinematics
	Variations
	Calculation of energy variations
	Spatial conservation laws
	Hamiltonian approach
	Acknowledgements
	References


