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Abstract

Let Σ be a closed connected orientable surface of negative Euler characteristic and G a semisimple Lie group. For any Anosov
representation ρ :π1(Σ) → G we construct domains of discontinuity with compact quotient for the action of π1(Σ) on flag
varieties G/Q. To cite this article: O. Guichard, A. Wienhard, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Quotients compacts et groupes de surfaces. Soit π1(Σ) le groupe fondamental d’une surface de Riemann connexe, fermée et
de genre supérieur et soit G un groupe de Lie semi-simple. Pour toute représentation Anosov ρ :π1(Σ) → G, nous construisons un
ouvert de la variété drapeau G/Q sur lequel π1(Σ) agit proprement avec quotient compact. Pour citer cet article : O. Guichard,
A. Wienhard, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [10] F. Labourie introduced the notion of Anosov structures and their holonomy representations, so-called
Anosov representations, to study the Hitchin component for SL(n,R). Anosov representations are in some sense
a dynamical analogue of holonomy representations of geometric structures (in the sense of Ehresmann), but the con-
cept of Anosov representations is more flexible. Anosov representations have been proven to be a key tool in the study
of higher Teichmüller spaces. In this Note we show that Anosov representations of surface groups actually give rise
to geometric structures on compact manifolds.

Theorem 1.1. Let Σ be a closed connected orientable surface of negative Euler characteristic, and let G be a semisim-
ple Lie group not locally isomorphic to SL(2,R).

Suppose that ρ : π1(Σ) → G is an Anosov representation, then there exist a parabolic subgroup Q < G and a
non-empty open set Ω ⊂ G/Q such that ρ(π1(Σ)) preserves Ω and acts on it freely, properly discontinuously and
with compact quotient.
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Note that Anosov representations are easily seen to be faithful with discrete image [10,7]. In particular, Anosov
representations into SL(2,R) are exactly Fuchsian representations, thus their action on the projective line is minimal.

The proof of Theorem 1.1 is constructive, i.e. we construct an explicit Q < G and a domain Ω ⊂ G/Q (see
Section 5 for examples). The construction uses the equivariant curve ξ : ∂π1(Σ) → G/P associated to an Anosov
representation (see Proposition 2.2), and the parabolic group Q depends on P .

Note that the projection pr :G/Pmin → G/Q from the full flag variety onto G/Q has compact fibers, therefore
the preimage Ω̃ = pr−1(Ω) is a domain of discontinuity for π1(Σ) with compact quotient. Thus, in Theorem 1.1 we
could always take Q = Pmin; however, it is useful to keep the dimension of the compact quotients Ω/π1(Σ) as small
as possible.

Even though we focus on surface groups here, some results generalize to Anosov representations of fundamental
groups of more general manifolds (e.g. hyperbolic manifolds).

2. Anosov representations

Let Σ be a closed connected oriented surface of negative Euler characteristic, π1(Σ) its fundamental group, T 1Σ

its unit tangent with respect to some hyperbolic metric and φt :T 1Σ → T 1Σ the geodesic flow. Denote by ∂π1(Σ)

the boundary at infinity of π1(Σ).
Let G be a semisimple real Lie group, let P+,P− be a pair of opposite parabolic subgroups of G and denote

by F ± = G/P± the flag variety associated to P±. There is a unique open G-orbit X ⊂ F + × F −. We have X =
G/(P+ ∩ P−), and as an open subset of F + × F − it inherits two foliations E± whose corresponding distributions are
denoted by E±, (E±)(f+,f−)

∼= Tf± F ±.
Given a representation ρ : π1(Σ) → G we consider the corresponding flat G-bundle P over T 1Σ . Via the flat

connection, the flow φt lifts to P .

Definition 2.1. (See [10].) A representation ρ :π1(Σ) → G is called a P+-Anosov representation (or simply an Anosov
representation) if the associated bundle P ×G X

(i) admits a section σ that is flat along flow lines, and
(ii) the action of the flow φt on σ ∗E+ (resp. σ ∗E−) is contracting (resp. dilating), i.e. there exists constants A,a > 0

such that for any e in σ ∗(E±)m and for any t > 0 one has

‖φ±t e‖φ±tm � A exp(−at)‖e‖m.

The set of P+-Anosov representations is open in Hom(π1(Σ),G) [10].

Proposition 2.2. (See [10].) Let Σ , G and P+ be as above. Let ρ be a P+-Anosov representation. Then

(i) there are two ρ-equivariant continuous maps ξ± : ∂π1(Σ) → F ±;
(ii) for every t+ �= t− ∈ ∂π1(Σ) we have (ξ+(t+), ξ−(t−)) ∈ X ;

(iii) for every γ ∈ π1(Σ) − {e}, the element ρ(γ ) is conjugate to an element in P+ ∩ P−, having a unique attracting
fix point in G/P+ and a unique repelling fix point in G/P−.

Important examples of Anosov representations are Hitchin representations into split real simple Lie groups [9,10,5],
maximal representations into Lie groups of Hermitian type [4,3], quasi-Fuchsian representations into SL(2,C), quasi-
Fuchsian representations in the sense of [11,2] and small deformations of embeddings of cocompact lattices in rank
one Lie groups into Lie groups of higher rank.

3. A special case

Let V be a real vector space and F a non-degenerate bilinear form on V which we assume to be either skew-
symmetric or symmetric indefinite of signature (p, q) (with p � q). Let GF = {g ∈ GL(V ) | g∗F = F }, let F0 =
GF /Q0 = {l ∈ P(V ) | F |l = 0} be the set of isotropic lines and F1 = GF /Q1 = {W ∈ Grp(V ) | F |W = 0} be the set of
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maximal isotropic subspaces (p = dimV/2 when F is skew-symmetric). Let also F0,1 = {(l,W) ∈ F0 × F1 | l ⊂ W }
and πi : F0,1 → Fi , i = 0,1, be the projections. Given a subset A ⊂ F0 we define the subset

KA := π1
(
π−1

0 (A)
) ⊂ F1.

For an isotropic line l ∈ F0, Kl ⊂ F1 is the set of maximal isotropic subspaces containing l, and KA = ⋃
l∈A Kl .

Similarly, given B ⊂ F1 we define KB ⊂ F0.

Theorem 3.1. Let Σ be as in Theorem 1.1 and let V , F and GF as above with dimV � 4. Suppose ρ :π1(Σ) → GF

is a Qi -Anosov representation, with i = 0 or 1, and let ξi : ∂π1(Σ) → Fi be the corresponding equivariant map.
Define Ωρ := F1−i − Kξi(∂π1(Σ)) ⊂ F1−i .

Then Ωρ is non-empty, open and preserved by ρ(π1(Σ)). Furthermore, the action of ρ(π1(Σ)) on Ωρ is free,
properly discontinuous and the quotient Ωρ/ρ(π1(Σ)) is compact.

The set Kξi(∂π1(Σ)) is closed and (because dimV � 4) of codimension at least 1 in F1−i ; by ρ-equivariance of ξi it
is preserved by ρ(π1(Σ)), hence Ωρ is a ρ(π1(Σ))-invariant non-empty open subset of F1−i . That the action is free
and properly discontinuous follows from the contraction estimates one can deduce from the representation ρ being
Qi -Anosov.

To prove compactness of the quotient Ωρ/ρ(π1(Σ)), we need to prove that Hn(Ωρ/ρ(π1(Σ));F2) does not van-
ish. First since the fibration of Eρ = Ωρ ×π1(Σ) Σ̃ over Ωρ/ρ(π1(Σ)) has contractible fibers, the homology of
Ωρ/ρ(π1(Σ)) is identified with the homology of Eρ . Then applying the Leray–Serre spectral sequence for the fibra-
tion of Eρ → Σ , we deduce Hn(Ωρ/ρ(π1(Σ));F2) ∼= Hn−2(Ωρ;F2) and this last group is shown to be nonzero by
Alexander duality.

4. Reduction to the special case

Our strategy to prove Theorem 1.1 is to find a G-module V with a non-degenerate bilinear form F in order
to apply Theorem 3.1. Lemmas 4.1, 4.2 and 4.3 show that we can find such a G-module so that the composition
π1(Σ) → G → GF satisfies the hypothesis of Theorem 3.1.

The next lemma uses standard terminology and notations for decomposition of a G-module V into weight spaces
Vχ (see e.g. [6]):

Lemma 4.1. Let P < G be a parabolic subgroup which is conjugated to P opp. Then there exists a real (irreducible)
representation π :G → GF < GL(V ) with one-dimensional highest weight space Vμ such that P = StabG(Vμ), and
where F is a non-degenerate bilinear form as in Section 3.

Moreover, if V+ = ⊕
χ>0 Vχ is the sum of the positive weight spaces, then V+ ⊂ V is a maximal F -isotropic

subspace and Q = StabG(V+) is a parabolic subgroup of G.

Note that the parabolic group Q in Theorem 1.1 is determined by this lemma. The existence of the irreducible
representation π is classical. That V+ is a maximal F -isotropic subspace whose stabilizer in G contains a Borel
subgroup can be checked by restricting the representation π to sl2-triples in g associated to the restricted roots.

Lemma 4.2. Let ρ :π1(Σ) → G be a P -Anosov representation with P being conjugate to P opp and π :G → GF as
in Lemma 4.1, then the composition π ◦ ρ :π1(Σ) → GF is Q0-Anosov.

Lemma 4.3. Let ρ :π1(Σ) → G be an Anosov representation, then ρ is also a P -Anosov with P being conjugate
to P opp.

This lemma follows from the fact that any P -Anosov representation is P opp-Anosov, and the fact that a represen-
tation that is both P -Anosov and Q-Anosov is also P ∩ Q-Anosov.

Proposition 4.4. Let ρ, G be as in Theorem 1.1 and π as in Lemma 4.1. Then the set Ωρ,π = Ωπ◦ρ ∩ G · [V+] is
non-empty in G · [V+] ∼= G/Q.
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For this we consider the Bruhat decomposition of G/Q and we show that the set K[Vμ] ∩ G · [V+] is the union
of Bruhat cells of codimension at least 2 in G/Q ∼= G · [V+]. In particular, since ∂π1(Σ) is one-dimensional, the
intersection of Kξ0(∂π1(Σ)) with G · [V+] is of codimension at least one in G · [V+] ∼= G/Q.

Theorem 1.1 follows then from Proposition 4.4 and Theorem 3.1.

5. Examples

5.1. Maximal representations into Sp(2n,R)

Any maximal representation ρ :π1(Σ) → Sp(2n,R) is P -Anosov where P is the stabilizer of a Lagrangian sub-
space in R2n (see [4] for definitions and proofs). Thus Theorem 3.1 applies and gives a domain of discontinuity
Ωρ ⊂ RP

2n−1.
In this case, due to maximality properties of the equivariant curve (see [4]), one can construct a natural O(n)-bundle

E over T 1Σ and a proper map Φ : Ẽ → Ωρ/ρ(π1(Σ)). Using [8] we can show that the quotient space Ωρ/ρ(π1(Σ))

is homeomorphic to an O(n)/O(n − 2)-bundle over the surface Σ .

5.2. Hitchin representations into SL(n,R)

Let ρ :π1(Σ) → SL(n,R) be a Pmin-Anosov representation, and let ξ = (ξ1, . . . , ξn−1) : ∂π1(Σ) → F (Rn) be the
equivariant map into the flag variety. Examples of such representations are Hitchin representations [9,10], but the
construction applies also to other such representations.

The trace defines a non-degenerate bilinear form F on V = End(Rn). Applying Theorem 3.1 to the Q1-Anosov
representation Ad◦ρ :π1(Σ) → GL(V ) we obtain a domain of discontinuity ΩAd◦ρ in GF /Q0 which gives rise to a
domain of discontinuity Ωρ,Ad ⊂ F1,n−1(Rn) in the space of partial flags consisting of a line and a hyperplane. Ωρ,Ad
is the complement of{

(p,H) ∈ F1,n−1
(
Rn

) ∣∣ ∃t ∈ ∂π1(Σ), ∃1 � k < l � n such that p ⊂ ξk(t) and ξ l−1(t) ⊂ H
}
.

For n = 3 this coincides with the domain of discontinuity defined in [1].
The construction of Section 4, applied to V = End(ΛkRn), gives rise to a domain of discontinuity in F (Rn) which

is the complement of
⋃

t∈∂π1(Σ) Lξk(t),ξn−k(t), where a flag (F1, . . . ,Fn−1) is in LD,E if there exist (si)i=1,...,k and
(ui)i=1,...,k such that dim(D ∩ Fsi ) = i, dim(E + Fui−1) = n − k + i − 1 and (s1, s2, . . . , sk) � (u1, u2, . . . , uk) with
respect to the lexicographic order on k-tuples.

5.3. Deformations of π1(Σ) → SO(2,1) → SO(n,1)

Let ρ :π1(Σ) → SO(n,1), n � 3, be a (small enough) deformation of the embedding π1(Σ) → SO(2,1) →
SO(n,1). Then the domain of discontinuity Ωρ constructed in Section 3 is the complement of the limit set of ρ

in Sn−1 and the quotient Ωρ/ρ(π1(Σ)) is homeomorphic to an Sn−3-bundle over Σ .
Details will appear elsewhere.

References

[1] T. Barbot, Three-dimensional Anosov flag manifolds, arXiv:0505500, 2005.
[2] T. Barbot, Quasi-Fuchsian AdS representations are Anosov, arXiv:0710.0969, 2007.
[3] M. Burger, A. Iozzi, A. Wienhard, Maximal representations and Anosov structures, in preparation.
[4] M. Burger, A. Iozzi, F. Labourie, A. Wienhard, Maximal representations of surface groups: Symplectic Anosov structures, Pure and Applied

Mathematics Quarterly. Special Issue: In Memory of Armand Borel 1 (2) (2005) 555–601.
[5] V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211.
[6] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991.
[7] O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (3) (2008) 391–431.
[8] O. Guichard, A. Wienhard, Topological invariants of Anosov representations, arXiv:0907.0273, 2009.
[9] N. Hitchin, Lie groups and Teichmüller space, Topology 31 (3) (1992) 449–473.

[10] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (1) (2006) 51–114.
[11] Q. Mérigot, Anosov AdS representations are quasi-Fuchsian, arXiv:0710.0618, 2007.


	Domains of discontinuity for surface groups
	Introduction
	Anosov representations
	A special case
	Reduction to the special case
	Examples
	Maximal representations into Sp(2n,R)
	Hitchin representations into SL(n,R)
	Deformations of pi1(Sigma) ->SO(2,1) ->SO(n,1)

	References


