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Abstract

Let g be an Einstein metric of indefinite signature such that the conformally-equivalent metric ψ−2g is also Einstein. We show
that if the metric g is light-line complete, then the conformal coefficient ψ is constant. If the manifold is closed, the completeness
assumption can be omitted (the latter result is due to Mikeš–Radulovich and Kühnel, but our proof is much simpler).

The proof is based on the investigation of the behavior of the function ψ along light-line geodesics: we show that for every
light-line geodesic γ (t) we have ψ(γ (t)) = const1 · t + const2. Since the function ψ cannot vanish, the light-line completeness of
the metric implies ψ = const2.

If the manifold is closed, the function ψ accepts its maximal value ψmax at a certain point. Then, for every light-line geodesic γ

through this point we have const1 = 0 implying ψ = ψmax at every point of this geodesic. Repeating the argumentation, we obtain
that for every light-line geodesic γ1 intersecting γ we have ψ = ψmax at every point of γ1 as well and so on. Since every two
points can be connected by a sequence of light-line geodesics, ψ is constant on the whole manifold. To cite this article: V. Kiosak,
V.S. Matveev, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Il n’existe pas de rescaling conformément Einstein d’une métrique d’Einstein pseudo-Riemannienne complète. Soit g une
métrique pseudo-riemannienne non définie de type Einstein telle que la métrique conformément équivalente ψ−2g soit aussi
d’Einstein. Nous montrons que si la métrique g est lumière-complète, i.e. ses géodésiques isotropes sont complètes, alors le
coefficient ψ est constant. Si la variété est fermée, l’hypothèse de complétude peut être omise (ce dernier résultat est dû à Mikeš–
Radulovich et Kühnel, mais notre démonstration est plus courte).

La démonstration est basée sur l’étude du comportement de la fonction ψ le long des géodésiques de type lumière. Si γ (t) est
une telle géodésique, alors : ψ(γ (t)) = const1 · t + const2. Comme la fonction ψ est non-nulle, la lumière-complétude implique
ψ = const2.

Si la variété est fermée, la fonction ψ prend sa valeur maximale ψmax en un certain point. Donc, pour toute géodésique de type
lumière γ passant par ce point, on a const1 = 0, ce qui implique que ψ = ψmax en tout point de cette géodésique. En répétant cet
argument, on obtient que pour toute géodésique γ1 de type lumière coupant γ , ψ = ψmax en tout point de γ1, et ainsi de suite. On
en déduit ψ est constante sur la variété entière, car deux points quelconques peuvent être joints par une suite de géodésiques de
type lumière. Pour citer cet article : V. Kiosak, V.S. Matveev, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
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Theorem 1. Let g be a light-line-complete pseudo-Riemannian Einstein metric of indefinite signature (i.e., for no
constant c the metric c · g is Riemannian) on a connected (n > 2)-dimensional manifold M . Assume that for the
nowhere vanishing function ψ the metric ψ−2g is also Einstein. Then, ψ is a constant.

Remark 1. Theorem 1 fails for Riemannian metrics (even if we replace light-line completeness by usual completeness)
– Möbius transformations of the standard round sphere and the stereographic map of the punctured sphere to the
Euclidean space are conformal nonhomothetic mappings. One can construct other examples on warped Riemannian
manifolds, see [6, Theorem 21].

Remark 2. By Theorem 1, light-line complete pseudo-Riemannian Einstein metrics of indefinite signature do not ad-
mit nonhomothetic conformal complete vector fields. The Riemannian version of this result is due to Yano and Nagano
[11]. Moreover, the assumption that the metric is Einstein can be omitted (by the price of considering only essential
conformal vector fields): as it was proved by D. Alekseevskii [1], J. Ferrand [3] and R. Schoen [10], a Riemannian
manifold admitting an essential complete vector field is conformally equivalent to the round sphere or the Euclidean
space. It is still not known whether the last statement (sometimes called Lichnerowicz–Obata conjecture) can be ex-
tended to the pseudo-Riemannian case, see [8] for a counterexample in the C1-smooth category, and [4,5] for a good
survey on this topic.

Remark 3. In the 4-dimensional Lorenz case, Theorem 1 was known in folklore: more precisely, conformal Einstein
rescalings of 4-dimensional Einstein metrics were described by Brinkmann [2], see also [7, Corollary 2.10]. The list
of all such metrics and their conformal Einstein rescalings is pretty simple and one can directly verify our Theorem 1
by calculations.

Remark 4. A partial case of Theorem 1 is [7, Theorem 2.2], in which it is assumed that both metrics are complete. This
extra-assumption is very natural in the context of [7] since the paper is dedicated to the classification of conformal
vector fields; moreover, Theorem 2.2 is not the main result of the paper. It is not clear whether in the proof of [7,
Theorem 2.2] the assumption that the second metric is complete could be omitted.

Proof of Theorem 1. It is well known (see for example [2, Eq. (2.21)] or [6, Lemma 1]) that the Ricci curvatures Rij

and R̄ij of two conformally equivalent metrics g and ḡ = ψ−2g = e−2φg are related by

R̄ij = Rij + (
�φ − (n − 2)‖∇φ‖2)gij + n − 2

ψ
∇i∇jψ. (1)

Consider a light-line geodesic γ (t) of the metric g. Since the metric g is light-line-complete, γ (t) is defined on the
whole R. “Light-line” means that g(γ̇ (t), γ̇ (t)) = gij γ̇

i(t)γ̇ j (t) = 0, where γ̇ is the velocity vector of γ (it is well
known that if this property is fulfilled in one point then it is fulfilled at every point of the geodesic).

Now contract (1) with γ̇ i γ̇ j . Since the metrics are Einstein and conformally equivalent, R̄ij , Rij and gij are
proportional to gij , and therefore the only term which does not vanish is γ̇ i γ̇ j n−2

ψ
∇i∇jψ . Thus, γ̇ i γ̇ j∇i∇jψ = 0.

Clearly, at every point of the geodesic we have γ̇ i γ̇ j∇i∇jψ = d2

dt2 ψ(γ (t)). Thus, d2

dt2 ψ(γ (t)) = 0 implying
ψ(γ (t)) = const1 · t + const. Since by assumptions the function ψ is defined on the whole R and is equal to zero
at no point, we have const1 = 0 implying ψ ≡ const along every light-line geodesic.

Now, every two points of a connected manifold can be connected by a finite sequence of light-line geodesics.
Indeed, consider R

n with the standard pseudo-Euclidean metric g0 of the same signature (r, n − r), 1 � r < n

as the metric g. The union of all light-line geodesics passing through points a (resp. b) are the standard cones
Ca := {(x1, . . . , xn) ∈ R

n | (x1 − a1)
2 + · · · + (xr − ar)

2 − (xr+1 − ar+1)
2 − · · · − (xn − an)

2 = 0} and, resp.,
Cb := {(x1, . . . , xn) ∈ R

n | (x1 − b1)
2 + · · · + (xr − br)

2 − (xr+1 − br+1)
2 − · · · − (xn − bn)

2 = 0}. These two cones
always have points of transversal intersection. Thus, two arbitrary points of R

n can be connected by a sequence of
two light-line geodesics of g0. Since the restriction of the metric g to a small neighborhood U ⊆ Mn can be viewed
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as a small perturbation of the metric g0 in R
n, two points in U can be connected by a sequence of two light-line

geodesics. Then, the set of points of M that can be connected with a fixed point p ∈ Mn by a finite sequence of
light-line geodesics is open and closed implying it coincides with M .

Since every two points of M can be connected by a sequence of light-line geodesics, and since as we proved above
the function ψ is constant along every light-line geodesic, we have that ψ is constant on the whole manifold as we
claimed. �
Theorem 2. Let g be a pseudo-Riemannian Einstein metric of indefinite signature on a connected closed (i.e., compact
with no boundary) (n > 2)-dimensional manifold M . Assume that for the nowhere vanishing function ψ the metric
ψ−2g is also Einstein. Then, ψ is a constant.

Remark 5. Theorem 2 is not new and is in [9, Theorem 5]. Moreover, Wolfgang Kühnel explained us how one can
obtain the proof combining the results of PhD thesis of Kerckhove, Eq. (1) due to [2], and also [7, Proposition 3.8(1)].
Our proof of Theorem 2 is much easier than the proofs of Mikeš–Radulovich and Kühnel. Actually, the initial version
of our paper did not contain Theorem 2 at all, but after J. Mikeš sent us his paper we immediately saw that the proof
of their Theorem 5 can be essentially simplified by using the trick from the proof of our Theorem 1.

Proof of Theorem 2. Since M is closed, there exists p0 ∈ M such that the value of ψ is maximal (we denote this
value by ψmax). We take a light-line geodesic γ such that γ (0) = p0. As we explained in the proof of Theorem 1,
the function ψ(γ (t)) is equal to const · t + ψmax. Since the value of φ at the point p0 is maximal, const = 0 implying
ψ(γ (t)) ≡ ψmax. Then, for every point p1 of geodesic γ the value of ψ is maximal. We can therefore repeat the
argumentation and show that for every light-line geodesic γ1 such that γ1(0) = p1 we have ψ(γ1(t)) ≡ ψmax and so
on. Since every two points of M can be connected by a sequence of light-line geodesics, we have that ψ is constant
on the whole manifold. �
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