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Abstract

We observe that the comparison result of Barles–Biton–Ley for viscosity solutions of a class of nonlinear parabolic equations
can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean
curvature flow. To cite this article: J. Chen, C. Pang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Unicité des solutions non bornées du flot lagrangien à courbure moyenne pour les graphes. Nous remarquons que le résultat
de comparaison de Barles–Biton–Ley sur les solutions de viscosité d’une classe d’équations non linéaires paraboliques peut être
appliqué à une équation géométrique, complètement non linéaire parabolique qui apparaît dans les solutions graphiques pour les
flots Lagrangiens à courbure moyenne. Pour citer cet article : J. Chen, C. Pang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the question of uniqueness for the following fully nonlinear parabolic equation

∂u

∂t
=

n∑
j=1

arctanλj (1)

with initial condition u(x,0) = u0(x), where u is a function from R
n to R and λj ’s are the eigenvalues of the Hes-

sian D2u. This equation arises naturally from geometry. In fact, when u is a regular solution to (1), it is known that
the graph (x,Du(x, t)) evolves by the mean curvature flow and it is a Lagrangian submanifold in R

n × R
n with the

standard symplectic structure, for each t (cf. [5,6]). For a smooth stationary solution to (1), the graph of its gradient
is a Lagrangian submanifold with zero mean curvature in R

2n. Recently, a smooth longtime entire solution to (1) has
been constructed in [2] assuming a certain bound on the Lipschitz norm of Du0.
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Barles, Biton and Ley have obtained a very useful general comparison result (Theorem 2.1 in [1]) for the viscosity
solutions of a class of fully nonlinear parabolic equations, as well as existence result (Theorem 3.1 in [1]). In particular,
they showed that (1) admits a unique longtime continuous viscosity solution for any continuous function u0 in R when
n = 1.

In this short note, we observe, via elementary methods, that the hypotheses in the general theorems in [1] are valid
for the geometric evolution equation (1) in general dimensions. The result is the following:

Theorem 1.1. Let u and v be an upper semicontinuous and a lower semicontinuous viscosity subsolution and super-
solution to (1) in R

n ×[0, T ) respectively. If u(x,0) � v(x,0) for all x ∈ R
n, then u � v in R

n ×[0, T ). In particular,
for any continuous function u0 in R

n, there is a unique continuous viscosity solution to (1) in R
n × [0,∞).

2. Hypotheses (H1) and (H2)

We now describe the assumptions in the comparison and existence results in [1].
Let Sn be the linear space of real n × n symmetric matrices. If X ∈ Sn, there exists an orthogonal matrix P such

that X = PΛP T where Λ is the diagonal matrix with diagonal entries consist of eigenvalues of X. Let Λ+ be the
diagonal matrix obtained by replacing the negative eigenvalues in Λ with 0’s. Define X+ = PΛ+P T .

Consider a continuous function F from R
n ×[0, T ]×R

n ×Sn to R. The following assumptions on F are necessary
to apply the results in [1]:

(H1) For any R > 0, there exists a function mR : R+ → R+ such that mR(0+) = 0 and

F
(
y, t, η(x − y),Y

) − F
(
x, t, η(x − y),X

)
� mR

(
η|x − y|2 + |x − y|)

for all x, y ∈ B(0,R) and t ∈ [0, T ], whenever X,Y ∈ Sn and η > 0 satisfy

−3η

(
I 0
0 I

)
�

(
X 0
0 −Y

)
� 3η

(
I −I

−I I

)
.

(H2) There exist 0 < α < 1 and constants K1 > 0 and K2 > 0 such that

F(x, t,p,X) − F(x, t, q,Y ) � K1|p − q|(1 + |x|) + K2
(
tr(Y − X)+

)α

for every (x, t,p, q,X,Y ) ∈ R
n × [0, T ] × R

n × R
n × Sn × Sn.

The operator F is degenerate elliptic if (H2) holds.

Theorem 2.1 (Barles–Biton–Ley). Let u and v be an upper semicontinuous viscosity subsolution and a lower semi-
continuous viscosity supersolution respectively of

∂u

∂t
+ F

(
x, t,Du,D2u

) = 0 in R
n × [0, T ),

u(·,0) = u0 in R
n.

Assume that (H1) and (H2) hold for F . Then

(1) If u(·,0) � v(·,0) in R
n, then u � v in R

n × [0, T ).
(2) If u0 ∈ C(Rn) there is a unique continuous viscosity solution in R

n × [0,∞).

We now present the proof of Theorem 1.1.

Proof. We define F :Sn → R by

F(X) = −i log
det(I + iX)

2
1
2

= − i

2
log

det(I + iX)

det(I − iX)
. (2)
det(I + X )
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That F takes real values follows easily from

F(X) = i

2
log

det(I − iX)

det(I + iX)
= F(X).

Note that F(D2u), by diagonalizing D2u at a point, is equal to
∑

arctanλj . Therefore the flow (1) can be written as
ut + (−F(D2u)) = 0.

Since F(x, t,p,X) = F(X) is independent of x, the right-hand side of the inequality for F in (H1) must be zero,
namely mR = 0. By multiplying an arbitrary vector (ξ, ξ) ∈ R

n ×R
n and its transpose to the second matrix inequality

in (H1), we see that X � Y . Therefore, in order to establish (H1) it suffices to show:
(H1′) For any X,Y ∈ Sn, if X � Y then F(X) � F(Y ).
For any X,Y ∈ Sn and t ∈ [0,1], define

fXY (t) = F
(
tX + (1 − t)Y

)
.

We will show that fXY (t) is nondecreasing in t ∈ [0,1] and then (H1′) will follow as fXY (0) = F(Y ) and fXY (1) =
F(X). Set

A = I + i
(
tX + (1 − t)Y

)
and

B = I − i
(
tX + (1 − t)Y

)
.

Then

fXY (t) = − i

2
(log detA − log detB).

It follows that AB = BA and
(
A−1 + B−1) · AB

2
= A + B

2
= I.

Note that both A and B are invertible matrices for all t ∈ [0,1]. Hence, by using the formula ∂t ln detG = tr(G−1∂tG)

for G(t) ∈ GL(n,R), we have

f ′
XY (t) = − i

2
tr
(
A−1 · ∂tA − B−1 · ∂tB

)

= − i

2
tr
((

A−1 + B−1) · i(X − Y)
)

= tr
((

I + (
tX + (1 − t)Y

)2)−1 · (X − Y)
)
. (3)

Since tX + (1 − t)Y is real symmetric, the matrix

C = I + (
tX + (1 − t)Y

)2

is positive definite, hence so is C−1. There exists a matrix Q ∈ GL(n,R) such that C = QQT . By the assumption
X � Y , we have

tr
(
C−1(X − Y)

) = tr
(
Q · QT (X − Y)

)
= tr

(
QT (X − Y) · Q)

� 0

since QT (X − Y)Q is positive semidefinite. Therefore, we have shown that (H1) is valid for F defined in (2).
As F(x, t,p,X) is independent of p, (H2) reads: there exist constants K > 0 and 0 < α < 1 such that F(X) −

F(Y ) � K(tr(X − Y)+)α for all X,Y ∈ Sn.
For any X,Y ∈ Sn, integrating (3) leads to

F(X) − F(Y ) =
1∫

tr
(
C−1(X − Y)

)
dt. (4)
0
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For X − Y ∈ Sn there exists an orthogonal matrix P such that X − Y = PΛP T where the diagonal matrix Λ has
diagonal entries λ1, . . . , λn. Let λ+

j = max{λj ,0}. Since 0 < C−1 � I , we have 0 < P T C−1P � I . If cjj denote the

diagonal entries of P T C−1P for j = 1, . . . , n, then cjj = 〈P T C−1Pej , ej 〉 where {e1, . . . , en} is the standard basis
for R

n and 〈·,·〉 is the Euclidean inner product. It follows that 0 < cjj � 1 for j = 1, . . . , n. Then

tr
(
C−1(X − Y)

) = tr
(
P T C−1P · P T (X − Y)P

)
= tr

(
P T C−1P · Λ)

=
∑

cjjλj

�
∑

λ+
j

= tr(X − Y)+.

Substituting the above inequality into (4) implies: for any X,Y ∈ Sn we have F(X) − F(Y ) � tr(X − Y)+.
Because arctanx is in (−π/2,π/2), we have F(X) − F(Y ) < nπ . For any constant α with 0 < α < 1, if tr(X −

Y)+ � 1 then

F(X) − F(Y ) � tr(X − Y)+ � nπ
[
tr(X − Y)+

]α
and if tr(X − Y)+ > 1 then

F(X) − F(Y ) � nπ � nπ
[
tr(X − Y)+

]α
.

Therefore, (H2) holds for K2 = nπ and any constants K1 > 0 and α with 0 < α < 1.
Now Theorem 1.1 follows immediately from Theorem 2.1. �
We notice that (H1′), for the operator F(X) = ∑

arctanλj (X), also follows from the basic fact (cf. p. 182 in [4]):
Suppose that X,Y ∈ Sn and the eigenvalues λj ’s of X and μj ’s of Y are in descending order λ1 � λ2 � · · · � λn and
μ1 � μ2 � · · · � μn. If X � Y , then λj � μj for j = 1, . . . , n.

We also mention the uniqueness of viscosity solutions of the Cauchy–Dirichlet problem for (1). Note that the
operator F(X) = ∑

arctanλj (X) satisfies (H1′) which is exactly the fundamental monotonicity condition (0.1) for
−F in [3], therefore −F is proper in the sense of [3] (cf. p. 2 in [3]). As (H1) holds, Theorem 8.2 in [3] is valid for (1):

Theorem 2.2. The continuous viscosity solution to the following Cauchy–Dirichlet problem is unique:

ut =
n∑

j=1

arctanλj , in (0, T ) × Ω,

u(t, x) = 0, for 0 � t < T and x ∈ ∂Ω,

u(0, x) = ψ(x), for x ∈ Ω,

where λj ’s are the eigenvalues of D2u, Ω ⊂ R
n is open and bounded and T > 0 and ψ ∈ C(Ω). If u is an upper

semicontinuous viscosity subsolution and v is a lower semicontinuous viscosity supersolution of the Cauchy–Dirichlet
problem, then u � v on [0, T ) × Ω .

Note that the initial-boundary conditions for the subsolution and supersolution are: u(x, t) � 0 � v(x, t) for t ∈
[0, T ) and x ∈ ∂Ω and u(x,0) � ψ(x) � v(v,0) for x ∈ Ω .
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