Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs

Jingyi Chen ${ }^{1}$, Chao Pang
Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada
Received 26 March 2009; accepted after revision 15 June 2009
Available online 17 July 2009

Presented by Pierre-Louis Lions

Abstract

We observe that the comparison result of Barles-Biton-Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow. To cite this article: J. Chen, C. Pang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Unicité des solutions non bornées du flot lagrangien à courbure moyenne pour les graphes. Nous remarquons que le résultat de comparaison de Barles-Biton-Ley sur les solutions de viscosité d'une classe d'équations non linéaires paraboliques peut être appliqué à une équation géométrique, complètement non linéaire parabolique qui apparaît dans les solutions graphiques pour les flots Lagrangiens à courbure moyenne. Pour citer cet article : J. Chen, C. Pang, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the question of uniqueness for the following fully nonlinear parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\sum_{j=1}^{n} \arctan \lambda_{j} \tag{1}
\end{equation*}
$$

with initial condition $u(x, 0)=u_{0}(x)$, where u is a function from \mathbb{R}^{n} to \mathbb{R} and λ_{j} 's are the eigenvalues of the Hessian $D^{2} u$. This equation arises naturally from geometry. In fact, when u is a regular solution to (1), it is known that the graph ($x, D u(x, t)$) evolves by the mean curvature flow and it is a Lagrangian submanifold in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with the standard symplectic structure, for each t (cf. [5,6]). For a smooth stationary solution to (1), the graph of its gradient is a Lagrangian submanifold with zero mean curvature in $\mathbb{R}^{2 n}$. Recently, a smooth longtime entire solution to (1) has been constructed in [2] assuming a certain bound on the Lipschitz norm of $D u_{0}$.

[^0]Barles, Biton and Ley have obtained a very useful general comparison result (Theorem 2.1 in [1]) for the viscosity solutions of a class of fully nonlinear parabolic equations, as well as existence result (Theorem 3.1 in [1]). In particular, they showed that (1) admits a unique longtime continuous viscosity solution for any continuous function u_{0} in \mathbb{R} when $n=1$.

In this short note, we observe, via elementary methods, that the hypotheses in the general theorems in [1] are valid for the geometric evolution equation (1) in general dimensions. The result is the following:

Theorem 1.1. Let u and v be an upper semicontinuous and a lower semicontinuous viscosity subsolution and supersolution to (1) in $\mathbb{R}^{n} \times[0, T)$ respectively. If $u(x, 0) \leqslant v(x, 0)$ for all $x \in \mathbb{R}^{n}$, then $u \leqslant v$ in $\mathbb{R}^{n} \times[0, T)$. In particular, for any continuous function u_{0} in \mathbb{R}^{n}, there is a unique continuous viscosity solution to (1) in $\mathbb{R}^{n} \times[0, \infty)$.

2. Hypotheses (H1) and (H2)

We now describe the assumptions in the comparison and existence results in [1].
Let S_{n} be the linear space of real $n \times n$ symmetric matrices. If $X \in S_{n}$, there exists an orthogonal matrix P such that $X=P \Lambda P^{T}$ where Λ is the diagonal matrix with diagonal entries consist of eigenvalues of X. Let Λ^{+}be the diagonal matrix obtained by replacing the negative eigenvalues in Λ with 0 's. Define $X^{+}=P \Lambda^{+} P^{T}$.

Consider a continuous function F from $\mathbb{R}^{n} \times[0, T] \times \mathbb{R}^{n} \times S_{n}$ to \mathbb{R}. The following assumptions on F are necessary to apply the results in [1]:
(H1) For any $R>0$, there exists a function $m_{R}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $m_{R}\left(0^{+}\right)=0$ and

$$
F(y, t, \eta(x-y), Y)-F(x, t, \eta(x-y), X) \leqslant m_{R}\left(\eta|x-y|^{2}+|x-y|\right)
$$

for all $x, y \in \bar{B}(0, R)$ and $t \in[0, T]$, whenever $X, Y \in S_{n}$ and $\eta>0$ satisfy

$$
-3 \eta\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right) \leqslant\left(\begin{array}{cc}
X & 0 \\
0 & -Y
\end{array}\right) \leqslant 3 \eta\left(\begin{array}{cc}
I & -I \\
-I & I
\end{array}\right) .
$$

(H2) There exist $0<\alpha<1$ and constants $K_{1}>0$ and $K_{2}>0$ such that

$$
F(x, t, p, X)-F(x, t, q, Y) \leqslant K_{1}|p-q|(1+|x|)+K_{2}\left(\operatorname{tr}(Y-X)^{+}\right)^{\alpha}
$$

for every $(x, t, p, q, X, Y) \in \mathbb{R}^{n} \times[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times S_{n} \times S_{n}$.
The operator F is degenerate elliptic if (H2) holds.
Theorem 2.1 (Barles-Biton-Ley). Let u and v be an upper semicontinuous viscosity subsolution and a lower semicontinuous viscosity supersolution respectively of

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+F\left(x, t, D u, D^{2} u\right)=0 \quad \text { in } \mathbb{R}^{n} \times[0, T), \\
& u(\cdot, 0)=u_{0} \quad \text { in } \mathbb{R}^{n} .
\end{aligned}
$$

Assume that (H1) and (H2) hold for F. Then
(1) If $u(\cdot, 0) \leqslant v(\cdot, 0)$ in \mathbb{R}^{n}, then $u \leqslant v$ in $\mathbb{R}^{n} \times[0, T)$.
(2) If $u_{0} \in C\left(\mathbb{R}^{n}\right)$ there is a unique continuous viscosity solution in $\mathbb{R}^{n} \times[0, \infty)$.

We now present the proof of Theorem 1.1.
Proof. We define $F: S_{n} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F(X)=-i \log \frac{\operatorname{det}(I+i X)}{\operatorname{det}\left(I+X^{2}\right)^{\frac{1}{2}}}=-\frac{i}{2} \log \frac{\operatorname{det}(I+i X)}{\operatorname{det}(I-i X)} . \tag{2}
\end{equation*}
$$

That F takes real values follows easily from

$$
\overline{F(X)}=\frac{i}{2} \log \frac{\operatorname{det}(I-i X)}{\operatorname{det}(I+i X)}=F(X)
$$

Note that $F\left(D^{2} u\right)$, by diagonalizing $D^{2} u$ at a point, is equal to $\sum \arctan \lambda_{j}$. Therefore the flow (1) can be written as $u_{t}+\left(-F\left(D^{2} u\right)\right)=0$.

Since $F(x, t, p, X)=F(X)$ is independent of x, the right-hand side of the inequality for F in (H1) must be zero, namely $m_{R}=0$. By multiplying an arbitrary vector $(\xi, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ and its transpose to the second matrix inequality in (H1), we see that $X \leqslant Y$. Therefore, in order to establish (H1) it suffices to show:
$\left(\mathrm{H}^{\prime}\right)$ For any $X, Y \in S_{n}$, if $X \geqslant Y$ then $F(X) \geqslant F(Y)$.
For any $X, Y \in S_{n}$ and $t \in[0,1]$, define

$$
f_{X Y}(t)=F(t X+(1-t) Y)
$$

We will show that $f_{X Y}(t)$ is nondecreasing in $t \in[0,1]$ and then $\left(\mathrm{H}^{\prime}\right)$ will follow as $f_{X Y}(0)=F(Y)$ and $f_{X Y}(1)=$ $F(X)$. Set

$$
A=I+i(t X+(1-t) Y)
$$

and

$$
B=I-i(t X+(1-t) Y)
$$

Then

$$
f_{X Y}(t)=-\frac{i}{2}(\log \operatorname{det} A-\log \operatorname{det} B)
$$

It follows that $A B=B A$ and

$$
\left(A^{-1}+B^{-1}\right) \cdot \frac{A B}{2}=\frac{A+B}{2}=I
$$

Note that both A and B are invertible matrices for all $t \in[0,1]$. Hence, by using the formula $\partial_{t} \ln \operatorname{det} G=\operatorname{tr}\left(G^{-1} \partial_{t} G\right)$ for $G(t) \in G L(n, \mathbb{R})$, we have

$$
\begin{align*}
f_{X Y}^{\prime}(t) & =-\frac{i}{2} \operatorname{tr}\left(A^{-1} \cdot \partial_{t} A-B^{-1} \cdot \partial_{t} B\right) \\
& =-\frac{i}{2} \operatorname{tr}\left(\left(A^{-1}+B^{-1}\right) \cdot i(X-Y)\right) \\
& =\operatorname{tr}\left(\left(I+(t X+(1-t) Y)^{2}\right)^{-1} \cdot(X-Y)\right) . \tag{3}
\end{align*}
$$

Since $t X+(1-t) Y$ is real symmetric, the matrix

$$
C=I+(t X+(1-t) Y)^{2}
$$

is positive definite, hence so is C^{-1}. There exists a matrix $Q \in G L(n, \mathbb{R})$ such that $C=Q Q^{T}$. By the assumption $X \geqslant Y$, we have

$$
\begin{aligned}
\operatorname{tr}\left(C^{-1}(X-Y)\right) & =\operatorname{tr}\left(Q \cdot Q^{T}(X-Y)\right) \\
& =\operatorname{tr}\left(Q^{T}(X-Y) \cdot Q\right) \\
& \geqslant 0
\end{aligned}
$$

since $Q^{T}(X-Y) Q$ is positive semidefinite. Therefore, we have shown that (H1) is valid for F defined in (2).
As $F(x, t, p, X)$ is independent of p, (H2) reads: there exist constants $K>0$ and $0<\alpha<1$ such that $F(X)-$ $F(Y) \leqslant K\left(\operatorname{tr}(X-Y)^{+}\right)^{\alpha}$ for all $X, Y \in S_{n}$.

For any $X, Y \in S_{n}$, integrating (3) leads to

$$
\begin{equation*}
F(X)-F(Y)=\int_{0}^{1} \operatorname{tr}\left(C^{-1}(X-Y)\right) \mathrm{d} t \tag{4}
\end{equation*}
$$

For $X-Y \in S_{n}$ there exists an orthogonal matrix P such that $X-Y=P \Lambda P^{T}$ where the diagonal matrix Λ has diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. Let $\lambda_{j}^{+}=\max \left\{\lambda_{j}, 0\right\}$. Since $0<C^{-1} \leqslant I$, we have $0<P^{T} C^{-1} P \leqslant I$. If $c_{j j}$ denote the diagonal entries of $P^{T} C^{-1} P$ for $j=1, \ldots, n$, then $c_{j j}=\left\langle P^{T} C^{-1} P e_{j}, e_{j}\right\rangle$ where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for \mathbb{R}^{n} and $\langle\cdot, \cdot\rangle$ is the Euclidean inner product. It follows that $0<c_{j j} \leqslant 1$ for $j=1, \ldots, n$. Then

$$
\begin{aligned}
\operatorname{tr}\left(C^{-1}(X-Y)\right) & =\operatorname{tr}\left(P^{T} C^{-1} P \cdot P^{T}(X-Y) P\right) \\
& =\operatorname{tr}\left(P^{T} C^{-1} P \cdot \Lambda\right) \\
& =\sum c_{j j} \lambda_{j} \\
& \leqslant \sum \lambda_{j}^{+} \\
& =\operatorname{tr}(X-Y)^{+} .
\end{aligned}
$$

Substituting the above inequality into (4) implies: for any $X, Y \in S_{n}$ we have $F(X)-F(Y) \leqslant \operatorname{tr}(X-Y)^{+}$.
Because $\arctan x$ is in $(-\pi / 2, \pi / 2)$, we have $F(X)-F(Y)<n \pi$. For any constant α with $0<\alpha<1$, if $\operatorname{tr}(X-$ $Y)^{+} \leqslant 1$ then

$$
F(X)-F(Y) \leqslant \operatorname{tr}(X-Y)^{+} \leqslant n \pi\left[\operatorname{tr}(X-Y)^{+}\right]^{\alpha}
$$

and if $\operatorname{tr}(X-Y)^{+}>1$ then

$$
F(X)-F(Y) \leqslant n \pi \leqslant n \pi\left[\operatorname{tr}(X-Y)^{+}\right]^{\alpha} .
$$

Therefore, (H2) holds for $K_{2}=n \pi$ and any constants $K_{1}>0$ and α with $0<\alpha<1$.
Now Theorem 1.1 follows immediately from Theorem 2.1.
We notice that $\left(\mathrm{H1}^{\prime}\right)$, for the operator $F(X)=\sum \arctan \lambda_{j}(X)$, also follows from the basic fact (cf. p. 182 in [4]): Suppose that $X, Y \in S_{n}$ and the eigenvalues λ_{j} 's of X and μ_{j} 's of Y are in descending order $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ and $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{n}$. If $X \geqslant Y$, then $\lambda_{j} \geqslant \mu_{j}$ for $j=1, \ldots, n$.

We also mention the uniqueness of viscosity solutions of the Cauchy-Dirichlet problem for (1). Note that the operator $F(X)=\sum \arctan \lambda_{j}(X)$ satisfies $\left(H 1^{\prime}\right)$ which is exactly the fundamental monotonicity condition (0.1) for $-F$ in [3], therefore $-F$ is proper in the sense of [3] (cf. p. 2 in [3]). As (H1) holds, Theorem 8.2 in [3] is valid for (1):

Theorem 2.2. The continuous viscosity solution to the following Cauchy-Dirichlet problem is unique:

$$
\begin{aligned}
& u_{t}=\sum_{j=1}^{n} \arctan \lambda_{j}, \quad \text { in }(0, T) \times \Omega, \\
& u(t, x)=0, \quad \text { for } 0 \leqslant t<T \text { and } x \in \partial \Omega, \\
& u(0, x)=\psi(x), \quad \text { for } x \in \bar{\Omega},
\end{aligned}
$$

where λ_{j} 's are the eigenvalues of $D^{2} u, \Omega \subset \mathbb{R}^{n}$ is open and bounded and $T>0$ and $\psi \in C(\bar{\Omega})$. If u is an upper semicontinuous viscosity subsolution and v is a lower semicontinuous viscosity supersolution of the Cauchy-Dirichlet problem, then $u \leqslant v$ on $[0, T) \times \Omega$.

Note that the initial-boundary conditions for the subsolution and supersolution are: $u(x, t) \leqslant 0 \leqslant v(x, t)$ for $t \in$ $[0, T)$ and $x \in \partial \Omega$ and $u(x, 0) \leqslant \psi(x) \leqslant v(v, 0)$ for $x \in \bar{\Omega}$.

References

[1] G. Barles, S. Biton, O. Ley, Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in R^{2}, J. Differential Equations 187 (2003) 456-472.
[2] A. Chau, J. Chen, W. He, Lagrangian mean curvature flow for entire Lipschitz graphs, arXiv:0902.3300.
[3] M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1-67.
[4] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[5] K. Smoczyk, Longtime existence of the Lagrangian mean curvature flow, Calc. Var. 20 (2004) 25-46.
[6] K. Smoczyk, M.T. Wang, Mean curvature flow of Lagrangian submanifolds with convex potentials, J. Differential Geom. 62 (2002) $243-257$.

[^0]: E-mail addresses: jychen@math.ubc.ca (J. Chen), ottokk@math.ubc.ca (C. Pang).
 1 The first author is partially supported by an NSERC grant.

 1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.06.020

