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Abstract

In this Note, we show that any localized average sampler could not be a stable sampler for L2, but that there is a localized
determining sampler for L2. To cite this article: M.Z. Nashed et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Échantillonnage moyenne dans L2. Dans cette Note, nous démontrons que tout échantillonneur moyen localisé ne peut pas être
un échantillonneur stable pour L2, mais qu’un échantillonneur déterminant localisé existe pour L2. Pour citer cet article : M.Z. Na-
shed et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A goal at the heart of digital signal processing is to reconstruct continuous time signals from their available samples.
The usual assumption in such problems is that the samples are ideal. For instance, in the classical band-limited model,
it is well known from the Whittaker–Shannon–Kotel’nikov sampling theorem that any continuous time signal f ∈ L2

band-limited to [−Ω,Ω] is uniquely determined and can be reconstructed in a stable way by a set of uniformly-spaced
samples f (kT ), k ∈ Z, taken T seconds apart with T � π/Ω :

f (t) =
∑
k∈Z

f (kT )
sinπ(t/T − k)

πt/T − k

[2,8]. Here L2 is the Hilbert space of all square-integrable functions on the real line with the standard L2 inner product
〈·,·〉 and norm ‖·‖2.

Unfortunately, in practice, ideal sampling is impossible to implement. A more accurate model considers that the
samples are obtained by a set of values of inner product between the continuous-time signal and the sampling func-
tionals. More precisely, given a Hilbert space H of time signals with inner product 〈·,·〉H , the sample yγ at the location
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γ ∈ Γ is obtained by taking the inner product between a time signal f and the sampling functional ψγ at the loca-
tion γ , i.e., yγ = 〈f,ψγ 〉H . We call Ψ = {ψγ }γ∈Γ the average sampler. In the above setup, the sampling procedure
on H via the average sampler Ψ can be interpreted as a linear operator

S :H � f �−→ {〈f,ψγ 〉H
}
γ∈Γ

∈ �2(Γ ), (1.1)

and the reconstruction procedure as finding the left inverse of the linear operator S. Here �2(Γ ) is the space of all
square-summable sequences on Γ with norm ‖·‖�2(Γ ) (or ‖·‖2 for short). We say that an average sampler Ψ on H is
a determining sampler if the sampling operator S in (1.1) is one-to-one, i.e., the only time signal f ∈ H , that satisfies
〈f,ψγ 〉H = 0 for all γ ∈ Γ , is the zero signal [3]. Similarly we say that an average sampler Ψ on H is a stable
sampler if the sampling operator S in (1.1) has bounded left-inverse, i.e., there exist positive constants A and B such
that A〈f,f 〉 �

∑
γ∈Γ |〈f,ψγ 〉H |2 � B〈f,f 〉 for all f ∈ H [3].

Determining and stable samplers have been studied for signals in shift-invariant spaces [1,3,9] and for signals with
finite rate of innovation [4,6,7]. In this paper, we consider the average sampling problem in the space L2, particularly,
the existence of localized determining samplers for L2 (Theorem 1) and the nonexistence of localized stable samplers
for L2 (Theorem 5). Here we say that an average sampler Ψ = {ψγ }γ∈Γ is localized if Γ is a relatively-separated
subset of R, i.e.,

sup
x∈R

∑
γ∈Γ

χγ+[0,1)(x) < ∞,

and if there exists a function g in the Wiener amalgam space W := {f | ∑k∈Z supx∈k+[0,1) |f (x)| < ∞} such that∣∣ψγ (x)
∣∣ � g(x − γ ) for all x ∈ R and γ ∈ Γ,

where χE is the characteristic function on a set E. The reasons for considering the localized sampler Ψ = {ψγ }γ∈Γ

are two-fold: 1) each index γ ∈ Γ means that there is an acquisition device located at that position, and hence it is
reasonable to assume that there are finitely many such devices in any unit interval and the distribution of those devices
is almost time-invariant, which in turn implies that the index set Γ is relatively-separated; 2) the sampling functional
ψγ reflects the characteristic of the acquisition device at the location γ , and hence it should be essentially supported
in a neighborhood of the sampling location γ , while the dominance of the sampling functional ψγ by the γ -shift of a
function g in the Wiener amalgam space is a reasonable description of such a phenomenon [6].

2. Determining sampler for L2

Theorem 1. There is a localized determining sampler for L2.

To prove Theorem 1, we will use the following modification of a result in [5, p. 2103]:

Lemma 2. Let 0 < D < 1 and Γ be the set of all integers contained in
⋃∞

n=1[an, bn), where the sequences {an}∞n=1
and {bn}∞n=1 satisfy the conditions 1 � an < bn < an+1 < bn+1 for all n � 1, and limn→∞ an = limn→∞ bn =
limn→∞ bn − an = +∞, limn→∞ bn

an
= 1 and

∑∞
n=1(

bn−an

an
)2 = +∞. If F is an analytic function of exponential

type πD, bounded on the real line, and F(γ ) = 0 for all γ ∈ Γ , then F is the zero function.

We can now start to prove Theorem 1.

Proof. Define Γl , 0 � l ∈ Z, by Γ0 = ⋃∞
n=1([(1 − n−1/2)10n, (1 + n−1/2)10n] ∩ Z), and Γl = ⋃∞

n=nl
([(1 + (2 −

2−l+1)n−1/2)10n +1, (1+ (2−2−l )n−1/2)10n]∩Z), where the integers nl , l � 1, are so chosen that n−1/210n � 2l+2

for all n � nl . Define Γ = ⋃∞
l=0 Γl . Then Γ is a set of integers and hence a relatively-separated subset of R.

Let h be a C∞ function supported in [−π/2,π/2] and satisfy

∞∑∣∣h(x − 2lπ/3)
∣∣ +

∞∑∣∣h(
x + (2l + 1)π/3

)∣∣ �= 0 for all x ∈ R. (2.1)

l=0 l=0
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Define the Fourier transform f̂ of an integrable function f by f̂ (ξ) = ∫
R f (x)e−ixξ dx, and define Ψ = {φγ (· − γ ) |

γ ∈ Γ } with the help of the Fourier transform by

φ̂γ (ξ) =
{

h(ξ − lπ/3) if γ ∈ Γl and l ∈ 2Z,

h(ξ + lπ/3) if γ ∈ Γl and l ∈ 2Z + 1.
(2.2)

Here the average sampler Ψ is well-defined because Γl ∩ Γl′ = ∅ for all nonnegative integers l �= l′. From the above
definition of the average sampler Ψ , we have that |φγ (x)| � |ĥ(x)| for all γ ∈ Γ . This shows that φγ , γ ∈ Γ , are
uniformly dominated by a function in the Wiener amalgam space, and hence Ψ in (2.2) is a localized sampler.

Now we prove that Ψ in (2.2) is a determining sampler. Take any function f ∈ L2 such that 〈f,φγ (· − γ )〉 = 0 for
all γ ∈ Γ . Define Fl , 0 � l � Z, by

F̂l(ξ) =
{

f̂ (ξ + lπ/3)h(ξ) if l ∈ 2Z,

f̂ (ξ − lπ/3)h(ξ) if l ∈ 2Z + 1.
(2.3)

Then for any 0 � l ∈ Z, F̂l is supported in [−π/2,π/2] and belongs to L1 ∩ L2, and

∣∣Fl(γ )
∣∣ = 1

2π

∣∣∣∣∣
∞∫

−∞
f̂ (ξ)φ̂γ (ξ)eiγ ξ dξ

∣∣∣∣∣ = ∣∣〈f,φγ (· − γ )
〉∣∣ = 0 for all γ ∈ Γl.

Then it follows from Lemma 2 that Fl ≡ 0 for all 0 � l ∈ Z. This together with (2.1) and (2.3) yields f ≡ 0. Therefore
Ψ in (2.2) is a localized determining sampler for L2. �
Remark 3. The functions φγ , γ ∈ Γ , in the average sampler Ψ constructed in the proof of Theorem 1 are dominated
by a function in the Wiener amalgam space, but their derivatives are not. Define Ψ̃ = {φ̃γ (· − γ ) | γ ∈ Γ } by

ˆ̃
φγ (ξ) = h(ξ) + e−l φ̂γ (ξ) if γ ∈ Γl and l � 0.

Then φ̃γ , γ ∈ Γ , are in a bounded set of the Schwartz class S . Moreover, one may verify that Ψ̃ is a determining
sampler for L2 too.

Remark 4. One may easily verify that for any relatively-separated subset Γ of R, Ψ = {φγ (· − γ ) | γ ∈ Γ } is not
a determining sampler for L2 if all the functions φγ , γ ∈ Γ , are supported in a compact set K , or if all φ̂γ , γ ∈ Γ ,
are supported in a compact set Ω . We do not know whether there is a determining sampler Ψ = {φγ (· − γ ) | γ ∈ Γ }
such that ‖φγ ‖2 = 1 and |φγ (x)| � C exp(−ε|x|) for some positive constants C, ε and a relatively-separated subset Γ

of R.

3. Stable sampler for L2

Theorem 5. Any localized average sampler is not a stable sampler for L2.

Proof. Take a localized average sampler Ψ = {φγ (· − γ ) | γ ∈ Γ }, where Γ is a relatively-separated subset of R.
Assume that h is a function in the Wiener amalgam space W that dominates all φγ , γ ∈ Γ , i.e., |φγ (x)| � h(x) for
all x ∈ R and γ ∈ Γ .

For any R > 1, let gR be a function in L2 such that ‖gR‖2 = 1, gR is supported in [0,1], and 〈gR,φγ (· − γ )〉 = 0
for all γ ∈ (−R,R) ∩ Γ . The existence of such a function gR follows from the facts that L2([0,1]) is an infinite-
dimensional space and that (−R,R) ∩ Γ is a finite set. Then

∑
γ∈Γ

∣∣〈gR,φγ (· − γ )
〉∣∣2 �

∑
γ∈Γ \(−R,R)

( 1∫
0

∣∣gR(x)
∣∣2∣∣φγ (x − γ )

∣∣dx

)
×

1∫
0

∣∣φγ (x − γ )
∣∣dx

� C‖h‖1

( ∑
γ∈Γ \(−R,R)

sup
x∈[0,1]

∣∣h(x − γ )
∣∣) → 0 as R → ∞, (3.4)

where C is a positive constant independent of R. This proves that Ψ is not a stable sampler for L2. �
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