

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1213-1216

Probability Theory/Mathematical Analysis

The explicit characterization of coefficients of a.e. convergent orthogonal series

Adam Paszkiewicz

Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, PL-90-238 Łódź, Poland

Received 16 March 2008; accepted after revision 15 July 2009

Available online 15 September 2009

Presented by Michel Talagrand

Abstract

We characterize sequences of numbers (a_n) such that $\sum_{n \ge 1} a_n \Phi_n$ converges a.e. for any orthonormal system (Φ_n) in any L_2 -space. To cite this article: A. Paszkiewicz, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Caractérisation explicite des coefficients des séries orthogonales convergentes presques partout. On donne une complète caractérisation de la suite des nombres (a_n) telle que $\sum_{n \ge 1} a_n \Phi_n$ converge, presque partout, pour tout système orthogonal (Φ_n) dans tout espace \mathbb{L}_2 .

La démonstration détaillées est donnée par A. Paszkiewicz dans l'article : On complete characterization of coefficients of a.e. convergent orthogonal series. *Pour citer cet article : A. Paszkiewicz, C. R. Acad. Sci. Paris, Ser. I 347 (2009).* © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

This Note presents a complete characterization of sequences (a_n) for which:

(a) $\sum a_n \Phi_n$ converges a.e. for any orthonormal (O.N. for short) sequence (Φ_n) in any L_2 -space.

The main result stated in Theorem 6 below is proved in [2]. Without loss of generality we consider only sequences (a_n) satisfying $a_n \ge 0$, $\sum_{n\ge 1} a_n^2 \le 1$. Let such a sequence be fixed and let

$$A = \left\{ \sum_{n \ge m} a_n^2; \ m = 1, 2, \dots \right\}.$$
 (1)

It is well known that a very sharp sufficient condition for (a) can be formulated by the use of so-called majorizing measures. We say, as in [2, Definition 1.7], that m is a majorizing measure on A if m is a Borel measure on \mathbb{R} concentrated on A, and

E-mail address: ktpis@math.uni.lodz.pl.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.07.012

$$\int_{0}^{1} \frac{\mathrm{d}\epsilon}{\sqrt{m((t-\epsilon^2,t+\epsilon^2))}} \leqslant 1 \quad \text{for any } t \in A.$$

The existence of a finite majorizing measure on A implies the a.e.-convergence of $\sum a_n \Phi_n$ for any O.N.-system (Φ_n). This can be obtained from [3, Theorems 4.6 and 2.9], the details are explained in [6] and also in [2, Sections 2.9, 2.10].

Nevertheless, an explicit characterization of coefficients a_n , $n \ge 1$, satisfying (*a*) was an open problem for decades, as indicated by a number of authors (see V.F. Gaposhkin [1], M. Talagrand [4]).

A solution is presented in this Note. We show, in particular, that the existence of a finite majorizing measure on A is equivalent to condition (*a*), and we construct a majorizing measure $m_{\bar{A}}$ on the closure \bar{A} with the smallest total mass $m_{\bar{A}}(\bar{A})$.

Our new formulas giving explicit characterizations of sequences (a_n) satisfying (a), are complicated. It is interesting to present them together with a simpler characterization of unconditional a.e.-convergence of series $\sum a_n \Phi_n$, announced in [2].

Definition 1. Let us denote $d_n^k = [\frac{n}{2^k}, \frac{n+1}{2^k}), 0 \le n < 2^k$, for $k \ge 1$, and let

$$\Delta_k^A = \bigcup_{n \in \Sigma_k} d_n^k$$

with

$$\Sigma_k = \{ n = 0, \dots, 2^k - 1; \ d_n^k \cap A \neq \emptyset \}, \quad k \ge 1.$$

By $\|\cdot\|$ we denote the L_2 -norm in $L_2[0, 1)$ or in another L_2 -space of real functions, writing $\|h\| = \infty$ when $\int |h|^2 = \infty$. As usual, $1_Z(\cdot)$ is an indicator of the set Z.

Relatively simple characterizations can be formulated for a.e.-convergence of permutations of the series $\sum a_n \Phi_n$ in (*a*) as follows:

Theorem 2. (See [2, Theorem 1.2].) The following conditions are equivalent:

(b) there exists a permutation σ on the set \mathbb{N} of positive integers such that

$$\sum_{n \ge 1} a_{\sigma(n)} \Phi_n \quad converges \ a.e. \ for \ any \ O.N.-system \ (\Phi_n);$$
(2)

(β) $\|\sum_{k \ge 1} \mathbf{1}_{\Delta_k^A}\| < \infty$ for A given by (1).

Theorem 3. (See [2, Theorem 1.3].) The following conditions are equivalent:

(c) for any permutation σ of \mathbb{N} , (2) is satisfied; (γ) $\sum_{k \ge 1} \|\mathbf{1}_{\Delta_k^A}\| < \infty$ for A given by (1).

Obviously,

 $(c) \Longrightarrow (a) \Longrightarrow (b),$

and thus any condition (α) equivalent to (a) should satisfy

 $(\gamma) \Longrightarrow (\alpha) \Longrightarrow (\beta).$

It turns out that (α) can be obtained by the following more delicate analysis of the indicators $1_{\Delta_{k}^{A}}$:

Definition 4. For any $k \ge 1$, let $\mathcal{F}_k = \sigma(d_n^k; 0 \le n < 2^k)$ be the σ -field generated by the intervals $d_n^k = [\frac{n}{2^k}, \frac{n+1}{2^k}]$. By $||h||_k$ we denote the 'conditional L_2 -norm'

$$\|h\|_k = \left(\mathbb{E}(h^2|\mathcal{F}_k)\right)^{\frac{1}{2}}$$

for a real L_2 -function h on [0, 1), where $\mathbb{E}(\cdot|\mathcal{F}_k)$ denotes the conditional expectation in [0, 1) with respect to Lebesgue measure λ . Thus $||h||_k$ is \mathcal{F}_k -measurable.

Definition 5. For L_2 -functions $h: [0, 1) \to [0, \infty)$ we define (non-linear) operations

$$V_k^A h = \mathbf{1}_{\Delta_k^A} + \|h\|_k, \quad k \ge 1.$$

The main result can be formulated in the following way:

Theorem 6. (See [2, Theorem 1.8].) For a sequence of coefficients (a_n) , $\sum a_n^2 \leq 1$, the following conditions are equivalent:

- (a) $\sum_{n \ge 1} a_n \Phi_n$ converges a.e. for any O.N. sequence (Φ_n) ; (A) there exists a majorizing measure *m* on *A* with $m(A) < \infty$ for *A* given by (1);
- (α) $\lim_{l\to\infty} \|V_1^A \cdots V_l^A 0\| < \infty$.

If conditions (a), (A) or (α) are not satisfied, then $\sum_{n\geq 1} a_n \Phi_n$ diverges a.e. for some O.N. sequence (Φ_n).

If conditions (a), (A) or (α) are satisfied, then we can construct some canonical majorizing measure $m_{\bar{A}}$ on \bar{A} = $A \cup \{0\}$ with minimal total mass $m_{\bar{A}}(\bar{A})$. To do this we introduce the following operations:

Definition 7. For an L_2 -function $h: [0, 1) \to [0, \infty)$ we define

$$W_k h = \frac{\|h\|_k + 1}{\|h\|_k} h$$

with the convention $\frac{a}{0}0 = 0$ for $a \ge 0$. Let m_l^A be the measure on [0, 1) with density $dm_l^A/d\lambda = (W_1 \cdots W_{l-1} \mathbf{1}_{\Delta_l^A})^2$, $l \ge 1$, for Δ_l^A given by Definition 1.

Theorem 8. (See [2, Theorem 8.11].) The measures m_l^A converge weakly, for $l \to \infty$, to some measure $m_{\bar{A}}$ concentrations of the second sec trated on the closure \overline{A} and $2m_{\overline{A}}$ is a majorizing measure on \overline{A} with

 $2m_{\bar{A}}(\bar{A}) \leq C \inf\{m(A); m - a \text{ majorizing measure on } A\},\$

for some constant C.

Moreover, any majorizing measure $m_{\bar{A}}$ on \bar{A} is a weak limit of a sequence of some majorizing measures on A [2, Proposition 1.9].

In fact for M(A) and N(A) being any two of the following three functions

$$A \mapsto \lim_{l \to \infty} \| V_1^A \cdots V_l^A 0 \|,$$

$$A \mapsto \lim_{l \to \infty} \| W_1 \cdots W_{l-1} \mathbf{1}_{\Delta_l^A} \| = \sqrt{m_{\bar{A}}(\bar{A})},$$

and

$$A \mapsto \sup_{\Phi_n - \text{O.N.-system}} \left\| \sup_{n \ge 1} |a_1 \Phi_1 + \dots + a_n \Phi_n| \right\|,$$

defined for all sets A of the form (1), M and N are of the same 'size', i.e.,

$$\frac{1}{C}M(A) - C \leqslant N(A) \leqslant CM(A) + C$$

for some universal constant C.

Moreover, K. Tandori has proved (see [5] and [2, Theorems 8.4, 8.4*]) that for any O.N.-system (Φ_n) condition (a) is equivalent to

 $\left\|\sup_{n\geq 1}|a_1\Phi_1+\cdots+a_n\Phi_n|\right\|<\infty.$

The main difficulty in the proof of Theorem 6 is the construction, for a given finite sequence $(a_n)_{n \le n \le N}$, of a system $(\Phi_n)_{n \le n \le N}$ such that $\|\sup_{1 \le n \le N} |a_1 \Phi_1 + \dots + a_n \Phi_n|\|$ is maximal possible. This is done in [2, Sections 3–7].

References

- [1] V.F. Gaposhkin, On convergence of orthogonal series, Dokl. Akad. Nauk SSSR 159 (1964) 243-246 (in Russian).
- [2] A. Paszkiewicz, On complete characterization of coefficients of a.e. convergent orthogonal series and on majorizing measures, Invent. Math., in press.
- [3] M. Talagrand, Sample boundedness of stochastic processes under increment conditions, Ann. Probab. 18 (1990) 1–49.
- [4] M. Talagrand, Convergence of orthogonal series using stochastic processes, unpublished manuscript.
- [5] K. Tandori, Über die Konvergenz der Orthogonalreihen, Acta Sci. Math. (Szeged) 24 (1963) 139-151.
- [6] M. Weber, Some theorems related to almost sure convergence of orthogonal series, Indag. Math. (N.S.) 11 (2000) 293-311.